
Tenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2013) 

Sector Workload Model for Benefits Analysis and 

Convective Weather Capacity Prediction 
 

Jerry D. Welch, John Y. N. Cho, Ngaire K. Underhill, and Richard A. DeLaura 

MIT Lincoln Laboratory 

Lexington, Massachusetts, U.S.A. 

welch@LL.MIT.EDU, jync@LL.MIT.EDU, ngaire.underhill@LL.MIT.EDU, richd@LL.MIT.EDU

 

 
Abstract— En route sector capacity is determined mainly by 

controller workload.  The operational capacity model used by the 

Federal Aviation Administration (FAA) provides traffic alert 

thresholds based entirely on hand-off workload.  Its estimates are 

accurate for most sectors.  However, it tends to over-estimate 

capacity in both small and large sectors because it does not 

account for conflicts and recurring tasks.  Because of those 

omissions it cannot be used for accurate benefits analysis of 

workload-reduction initiatives, nor can it be extended to estimate 

capacity when hazardous weather increases the intensity of all 

workload types. 

We have previously reported on an improved model that 

accounts for all workload types and can be extended to handle 

hazardous weather.  In this paper we present the results of a 

recent regression of that model using an extensive database of 

peak traffic counts for all United States en route sectors.  The 

resulting fit quality confirms the workload basis of en route 

capacity.  Because the model has excess degrees of freedom, the 

regression process returns multiple parameter combinations with 

nearly identical sector capacities.  We analyze the impact of this 

ambiguity when using the model to quantify the benefits of 

workload reduction proposals.  We also describe recent 

modifications to the weather-impacted version of the model to 

provide a more stable normalized capacity measure.  We 

conclude with an illustration of its potential application to 

operational sector capacity forecasts in hazardous weather. 
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I. INTRODUCTION 

The capacity of en route sectors is determined more by 
controller workload than by airspace limitations [1].  We have 
found that this is also often true in sectors that are partially 
blocked by hazardous weather.  A model based on the premise 
that the weather increases controller workload can explain 
observed reductions in traffic during historical storm events 
[2]. 

A workload-based model is also useful for the analysis of 
the capacity benefits of any proposed air traffic management 
improvement aimed at reducing controller workload [3, 4].  
Examples include digital data communication, improved 
surveillance accuracy and update rates, decision support 
automation for controllers, conflict prevention/resolution 

systems, self-separation aids for pilots, and systems for 
improved weather sensing, predicting, and avoidance. 

Accurate capacity models are also needed to manage 
operational flow as traffic demand grows or as hazardous 
weather introduces additional controller tasks [5, 6].  The 
current FAA capacity model provides operational traffic alerts 
based solely on hand-off workload without considering 
conflict-resolution, recurring, and background tasks [7].  This 
approach is effective and simple because inter-sector 
coordination workload dominates most sectors and grows 
linearly with traffic count.  It is inversely related to the mean 
transit time of the traffic through a sector, and we thus refer to 
it as “transit” workload. 

Sector size also affects capacity.  Small sectors are 
expressly designed to handle dense airspace by allowing more 
persons to cooperate in its control.  However, small sectors 
have less individual peak traffic handling capacity than large 
sectors, partly because of reduced transit times and partly 
because of higher conflict rates.  Conflict-prevention and 
resolution workload grows linearly with traffic density and 
ultimately dominates small sectors operating near capacity.   

Large sectors have larger mean transit times, which tend to 
offset the effect of traffic growth on transit workload.  
However, recurring tasks such as traffic monitoring increase 
linearly with traffic, and are independent of transit time.  Thus, 
recurring tasks dominate large sectors that operate near 
capacity.  Consequently, a model that considers only transit 
workload has a tendency to over-estimate capacity in both 
small and large sectors. 

Another limitation of a model that does not consider 
conflict or recurring tasks is that it cannot be extended to 
estimate sector capacity when weather forces controllers to 
reduce aircraft separations and to vector aircraft around storm 
cells. 

We have developed a model that accounts for all task types 
[8].  It defines four aggregated workload components.  One 
component includes tasks that increase as the square of the 
traffic count, N.  Two others include tasks that increase linearly 
with N, and one is independent of N.  The capacity of the sector 
is defined as the value of N that makes the sum of the four 
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workload components equal an empirically determined safe 
workload intensity limit. 

We begin this paper by reviewing the FAA’s current 
operational sector overload alerting tool, which uses a subset of 
the full model.  We follow with a short review of how 
workload models determine traffic flow capacity and support 
strategic air traffic management based on directional flow.   We 
then review the full workload model and show results from a 
recent data regression using a large and comprehensive 
database of peak traffic counts for all en route sectors in the 
United States.  The quality of the fit confirms the workload 
basis of en route capacity and the ability of four workload 
components to quantify that capacity 

The full model has extra degrees of freedom that result in 
multiple combinations of regression parameters that give nearly 
identical sector capacities but distinctly different workload 
ratios.  We address the impact of these parameter ambiguities 
on benefits analyses that must distinguish between different 
workload types. 

We conclude by describing improvements to our extension 
of the model that allow estimation of the reduction of a sector’s 
operational capacity resulting from a partial blockage of its 
airspace by hazardous weather.  Such estimates could provide 
operational alerts based on forecasts of en route sector demand 
relative to the current capacity estimates for those sectors.  The 
added alerts would indicate sector-capacity percentage 
reduction relative to the full-workload sector capacity estimates 
in fair weather. 

We outline the procedure for computing the fractional en 
route sector volume weather blockage, and for using that metric 
to estimate the residual capacity of the sector.  We conclude 
with an illustration using archived traffic and weather data to 
simulate an operational weather alerting procedure. 

II. WORKLOAD CAPACITY MODELS 

A. Monitor Alert Parameter (MAP) Model 

It is informative to illustrate the underlying theory of sector 
capacity in the simpler context of the FAA’s current 
operational National Airspace System (NAS) Monitor Alert 
tool.  We start with the definition of workload intensity, which 
is the fraction of the sector controller team’s time that is 
occupied with a given task type.  The workload intensity 
associated with a task type is the product of the mean time 
required to service that type of task and the mean task rate [1]. 

Analysis of the FAA’s MAP capacity rule [7] shows that it 
bases sector capacity alerting thresholds on an implicit 
workload model that considers only transit workload intensity, 

     
    

 
 .                     (1) 

The MAP capacity model is consistent with an observation 

that the mean hand-off service time t is 36 seconds and that 
each sector reaches capacity when its workload intensity Gt 
equals 1.  To find the peak allowable aircraft count for any 
sector, we set Gt = 1 and solve for the MAP capacity NMAP.  
When Gt equals 1, NMAP = T/36.  Thus, NMAP is proportional to 
T, and when T = 360 seconds, the MAP capacity is 10 aircraft. 

Operational experience indicates that the safe capacity of an 
en route sector does not continue to increase linearly as T 
increases beyond about 600 seconds.  For this reason, the MAP 
rule includes an upper capacity limit of 18 aircraft.  Operational 
experience also indicates that factors other than transit time can 
influence each sector’s capacity.  Consequently, the MAP rule 
allows operational settings to deviate from the nominal rule by 
plus or minus three aircraft.   

Although the current MAP operational settings are static, 
the MAP model could provide dynamic fair-weather capacity 
estimates if it were provided with current or predicted sector 
transit times, which change with prevailing winds and current 
route utilization. 

Fig. 1 shows the static MAP operational settings for 680 
continental en route sectors in the NAS.  The settings lie below 
the NMAP + 3 upper limit for most sectors except for sectors 
with mean transit times shorter than 600 seconds. 

 

Figure 1.  MAP rule and operational MAP settings. 

Fig. 2 shows observed peak instantaneous traffic counts for 
all en route NAS sectors on their peak traffic days in July and 
August 2007.  The counts are plotted versus the mean sector 
transit time at the time of the count.  The frontier slope of the 
data exceeds the slope implied by the MAP model by about 
10%. 

Peak counts for a few sectors with transit times greater than 
600 seconds exceed the MAP model limit.  However, peak 
counts for most sectors fall well below the MAP model limit.  
This is appropriate since the MAP model is intended to define a 
maximum capacity limit for safe operation.  Analysis of peak 
count data indicates that only about 10% of en route sectors 
ever operate at the MAP model limit.  Most of those sectors are 
located near dense terminal airspace and are manned by skilled 
controllers.  Thus, the workload-based MAP capacity model 
defines peak instantaneous sector counts that represent current 
best practice in the U.S. NAS.   In fact, capacity estimates from 
the full workload model suggests that operational MAP settings 
consistently over-estimate the safe capacity of high traffic 
density sectors smaller than about 8,000 cubic nautical miles. 
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Figure 2.  MAP rule and NAS peak sector traffic. 

B. Flow Capacity 

Although air traffic managers use sector count N to monitor 
potential overloads, they use flow rate F to control traffic [9, 
10].  Sector flow rate is numerically equal to the sector handoff 
rate, that is, the current sector traffic count N divided by the 
mean transit time T [1]. 

The black trace in Fig. 3 is a plot of MAP throughput FMAP 
versus T.  The linear region of the graph, up to transit times of 
about 11 minutes, corresponds to a throughput of one flight per 
36 seconds, or 100 flights per hour.  The observed throughput, 
which is based on the same peak count and mean transit time 
data used in Fig. 2, is influenced by the MAP limit, even 
though flow rates of sectors often exceed the MAP throughput 
value. 

 

Figure 3.  MAP and observed peak throughput for NAS sectors. 

The observed decline in throughput for large transit times is 
evidently caused by the 18-aircraft limit.  That decline rate is 
slightly faster than predicted for those same sectors by the full 
workload model, as shown in Fig. 4.  The full capacity model 
predicts a small but significant change in flow capacity with 
sector volume.  Very small sectors and very large sectors both 
tend to constrain flow capacity.  Flow capacity peaks at about 
120/hr at a sector volume of 5,000 cubic nautical miles and 
gradually drops to about 70/hr at a volume of 80,000 cubic 

nautical miles.  It drops to about 50/hr as the sector volume 
falls to 2,000 cubic nautical miles. 

Throughput falls in small sectors because of conflict 
workload.  Small sectors provide an organized way for 
additional controllers to share the control of airspace that 
experiences high traffic densities.  The sectors with the greatest 
flow capacities range from 5,000 to 30,000 cubic nautical 
miles.  The most common NAS en route sector volume is 
10,000 cubic nautical miles.  Although throughput falls in 
larger sectors because of recurring workload, the decline is of 
little concern because large sectors are expressly designed for 
staffing efficiency when controlling airspace with low demand. 

 

Figure 4.  Modeled and observed peak throughput for NAS sectors. 

Air traffic managers must also determine the flow capacity 
of areas encompassing multiple sectors.  Since flow is 
continuous along each route, route flow capacity is determined 
by the sector along the route with the lowest flow capacity.  
The flow capacity of any area is simply the sum of the 
“bottleneck” flow rates for its routes.  Smaller sectors 
compensate for their lower flow capacities by allowing a 
greater number of routes through a given area. 

C. Flow Directionality 

Although sector capacity varies with flow direction, 
workload-based capacity models do not explicitly address 
directionality.  However, workload models incorporate implicit 
directionality via the mean sector transit time T.  Transit time is 
the dominant workload factor.  Transit time varies with the 
flow direction relative to wind and relative to sector 
boundaries.  Although the current MAP model employs static, 
rather than dynamic, transit time estimates, transit time could 
be estimated from filed flight plans as part of the operational 
NAS Monitor demand modeling process.  

Directionality becomes particularly important in convective 
weather with “organized” line-storm blockages [11].  Sector 
workload models do not provide a means of explicitly 
determining directional capacity in the presence of organized 
hazardous weather. 

D. Full Workload Model  

All sector workload events can be aggregated into workload 
types that are either independent of traffic (i.e., background 
workload) or that increase linearly or as the square of the sector 
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aircraft count N.  As noted above, each workload intensity 
component is the product of the mean time required to service 
that type of task and the mean task rate [12]. 

The conflict rate is proportional to N squared and inversely 
proportional to sector airspace volume [1].  The transit rate, as 
noted previously, is proportional to N and inversely 
proportional to the mean transit time of flights through the 
sector.  The recurring workload intensity associated with 
activities like monitoring and vectoring aircraft is also 
proportional to N, but is independent of transit time. 

The total workload intensity G is the fraction of controller 
time needed to handle constant background workload plus the 
three task types that increase with N.  When N grows and G 
reaches a limit Gc such that the controller team cannot safely 
handle more aircraft, capacity is reached. 

The equation for total fair-weather workload intensity is: 

     
  

 
  

  

 
  

  

 
      ,                (2) 

where Gb is the constant background workload, r is the fair-
weather recurring task controller service time per flight, N is 
the number of flights in the sector, P is the mean task 

recurrence period, t is the fair-weather inter-sector hand-off 
service time per flight, T is the mean sector transit time, Q is 
the total sector airspace volume,  

              , (3) 

where Mh and Mv are the horizontal and vertical miss distances 
that constitute a separation violation, V12 is the mean of the 
pair-wise closing speeds of the aircraft in the sector that could 

pass closer than the defined miss distances [1], and c is the 
conflict resolution task service time per flight.  Physically, 

V12c is the mean separation lost while resolving each conflict, 

where we refer to the product V12c as dc. 

If all aircraft in a sector were flying at constant altitude, Mv 

would be constant.  Since altitude changes increase the vertical 
positional uncertainty of the aircraft, we increase Mv 
proportionally to the fraction of flights that are ascending or 
descending in the sector.  Specifically, we set 

                   , (4) 

where Fca is the fraction of flights in the sector that change 
altitude by more than 2,000 ft and Mvmax is the maximum 
vertical miss distance. 

Setting G to Gc, the human workload limit, and solving 
equation (1) we get the sector capacity 
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where 
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and 

         , (8) 

where, as per [12], we set  

         . (9) 

In summary, the independent sector variables that 
determine the model capacity Nm are transit time T, airspace 
volume Q, and altitude change fraction Fca.  

E. NAS Regression 

Given the above independent sector variables, we regress 
against observed peak sector count data to provide numerical 
values for four key workload model parameters.  These are the 

mean transit service time t, the mean loss of separation while 

servicing conflicts dc = cV12, the mean recurring service time 

r, and the maximum vertical miss distance Mvmax.  We 
arbitrarily set the background workload intensity Gb equal to 
0.1 and the mean task recurrence period P equal to 600 
seconds. 

We previously reported two trial regressions.  The first used 
data from Northeastern United States airspace, but with sector 
volumes that did not accurately represent operational sectors 
[1].  The second used a small data set covering the entire NAS 
that was restricted to the months of July and Aug 2007 and thus 
missed high-demand days for centers with peak traffic in 
winter [13, 14].  (This is the source of the peak sector counts 
shown in Figs. 2-4.) 

The most recent NAS regression is based on data from the 
ten highest traffic days for each en route center in 2007.  This 
totals 9,170 en route NAS sector-days.  It uses archived FAA 
Sector Design and Analysis Tool (SDAT) data [15] for each of 
the 20 NAS en route centers.  The SDAT database also 
includes traffic counts from Terminal Radar Approach Control 
(TRACON) airspace, where extra controller staffing, reduced 
speeds, and special airspace designs increase capacity beyond 
en route levels. 

The SDAT database provides sector entry and exit times 
from which we compute the peak instantaneous daily traffic 
count Np and the mean transit time T of the counted aircraft.  
The database also provides the current sector area As, and its 
actual traffic altitudes.  We use these to compute the sector 
airspace volume, Q.  Finally, it provides the daily sector 
altitude change fraction Fca.  Neither of the earlier trial data sets 
allowed accurate determination of Fca . 

Fig. 5 shows the SDAT NAS peak instantaneous daily 
traffic counts Np for all sector-days plotted versus the mean 
transit times T of the counted aircraft on those days.  A distinct 
upper data frontier is apparent, and it has approximately the 
same initial slope as that of the limited data set shown in Fig. 2.  
Other than the number of sector-days, the main difference is 
the presence of high TRACON traffic counts with sector transit 
times ranging roughly from 400 to 900 seconds.  

Considerable variance or “spread” occurs in the peak 
counts at all transit times.  Many of the peak counts fall below 
the upper data frontier because of low demand.  Low peak 
counts can also result from small sector volumes or sectors 
with high altitude-change fractions or sectors with other 
complexity factors that increase workload and reduce capacity.  
Numerous such factors have been identified [16 -21].  A key 
premise of the current model is that all of these workload 



factors can be aggregated into four basic workload types, and 
the degree to which the model fits the data is a test of that 
premise. 

 

Figure 5.  SDAT NAS peak daily traffic count Np versus transit time T. 

The regression objective function [14] is designed to focus 
on the upper data frontier and ignore low-demand sectors (Np < 
Nm-4) and high-count TRACON sectors (Np > Nm+4).  It 
rewards sectors whose counts are equal to or slightly below 
model capacity, and it penalizes sectors whose counts are 
slightly above model capacity.  We start the regression process 
by adjusting the reward/penalty ratio to obtain the desired 
percentile fit. 

Our most recent regression resulted in 94.95% of the NAS 
sectors with peak daily counts less than or equal to their model 
capacities.  It returned a global peak solution associated with 

the following parameters: t = 14 seconds, dc = 1.6 nautical 

miles,r = 9 seconds, and Mvmax = 1.6 nautical miles.  These 
parameters give a mean model capacity for all NAS en route 
sectors of 17.8 aircraft. 

The resulting sector capacities Nm are plotted in Figs. 6, 7, 
and 8 versus the three independent sector variables T, Q, and 
Fca.  All of the capacity plots exhibit upper frontiers that match 
the corresponding peak count frontiers.  There is considerable 
spread in the model capacity values, but, unlike the spread in 
the peak counts, it cannot be attributed to lack of demand.  It is 
caused by variations in the other independent variables used to 
compute the model capacity. 

 

Figure 6.  Model capacity Nm and peak count Np versus transit time T. 

The plot of model capacity versus transit time (Fig. 6) has a 
spread that exhibits a distinct upper bound for all values of T.  
This variance is caused by differences in sector size.  The 
highest model capacities are associated with large sectors, but 
when sector size increases to the point that conflict workload 
becomes smaller than transit workload, the capacity saturates 
and is determined solely by T. 

A saturated upper capacity bound also occurs in Fig. 7, but 
only in very small sectors where conflict workload dominates.  
Differences in transit workload are the dominant cause of 
variance in all larger sectors, and the spread grows with T, 
which is not bounded. 

 

Figure 7.  Nm and Np versus sector volume Q. 

Transit workload differences also dominate the plot of 
model capacity versus altitude change fraction in Fig. 8.  The 
model variance is particularly large because sector volume 
changes also contribute.  The fit between the model and the 
peak daily counts in Fig. 8 is not as good as in the other two 
figures.  This suggests that Equation (4), which relates altitude 
change fraction to conflict capacity via the effective vertical 
miss distance, does not capture the entire effect of the altitude 
change fraction.  The availability of accurate altitude change 
information in the new SDAT data set revealed this problem 
for the first time.  We are investigating the use of an additional 
recurring workload term to improve the altitude fit. 

 

Figure 8.  Nm and Np versus versus altitude change fraction Fca. 

We have noted that Figs. 6, 7, and 8 all include outlier 
counts from TRACON sectors.  We know that they are 



TRACON sectors because the outliers cluster around sector 
volumes of 10,000 cubic nautical miles, transit times of 600 
seconds, and altitude change fractions of 0.9.  These are all 
attributes of terminal airspace. 

F. Regression Accuracy 

Fig. 9 is the distribution of the difference between the 
rounded model capacity Nm and the peak count Np for the 
current regression parameters.  The mean is 5.6 aircraft, the 
variance is 39.4 aircraft, and there are 415 (4.8% of the total) 
instances of perfect matches (Nm = Np).  As the fit quality 
improves, the mean and variance drop, and more perfect 
matches occur.  The equivalent numbers for a good (transit 

service time t = 30 s, 98.5 percentile) MAP model regression 
fit against the SDAT NAS data are significantly inferior: mean 
= 17, variance = 204, and perfect match count = 47. 

 

Figure 9.  Distribution of difference between Nm and Np. 

The 2-D histogram of Fig. 10 provides another view of the 
distribution of NAS sectors relative to the capacity frontier.  
The figure shows the number of instances of each combination 
of observed peak count and capacity rounded to integer values. 

 

Figure 10.  2-D histogram of peak count and model capacity. 

The 95-percentile fit is well aligned with the histogram 
axes, and the frontier is extended and linear with uniform 

counts.  It is consistent with Fig. 9, in that most peak counts fall 
between two and four aircraft below their corresponding model 
capacities.  The bin with the highest count (102 instances) 
corresponds to a model capacity of 14 aircraft and a peak count 
of 10 aircraft. 

We expect the addition of a new term relating recurring 
workload to altitude change fraction to result in a regression 
with improved accuracy and better overall agreement between 
the peak count frontiers and the data spreads of the model 
capacities and the peak daily counts. 

G. Parameter Ambiguity 

Because the model has extra degrees of freedom, multiple 
parameter combinations exist that give nearly identical sector 
capacities.  One can resolve ambiguity technically by 
quantizing the search parameters and by fitting the model to 
many sector count observations, which are naturally quantized 
to integer values.  Given enough sector data, a quantized 
regression always returns a unique global peak. 

However, ambiguities remain in the form of local peaks in 
the regression score.  Local peaks produce nearly identical 
sector capacities, and thus do not reduce confidence in the 
model’s capacity predictions.  However, prominent local peaks 
can have distinctly different workload component ratios.  If 
there were a reason to select a peak other than the global peak, 
it could alter predictions of the benefit of reducing a specific 
workload type. 

The ambiguity between transit and conflict workload is 
illustrated in Fig. 11, which is a contour plot of the scores from 
an earlier regression.  The maximum score occurred with a 

transit service time of t = 13 seconds, a mean conflict 
separation loss of dc = 1.6 nautical miles, and a recurring 

service time of r = 9 seconds.  In the plot, the recurring service 

time is fixed at r = 9 seconds, and the transit service time t 
and conflict separation loss dc are integer independent 
variables. 

 

Figure 11.  Contour plot of score with constant recurring service time. 
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Each grid intersection node in the plot represents a unique 
parameter set with a discrete integer regression score.  The 
scores are interpolated to generate the contours.  The interval 
between contours is a score difference of 90, and for clarity, we 
label only the two highest contours (5,840 and 5,930).  The text 
arrows indicate the locations of the four highest scores.  

The peak score (6,020) occurs at t = 13 seconds and d = 1.6 
nautical miles and is indicated with a small circle.  The second 
largest score (5,933) occurs at the node directly below the peak.  

The ridge of peaks indicates a nearly linear inverse trade-
off between transit service time and conflict service distance 
when recurring service time is held constant.  Similar inverse 
trade-offs occur between other parameter pairs.  

The local peaks in Fig. 11 all have scores and capacities 
that are close to those of the global peak.  However, some of 
them represent significant changes in local parameter 
combinations and thus imply significantly different transit and 
conflict workload intensities.   

We can compute the effect of hypothetical changes in 
workload parameters by averaging sector capacities and sector 
workload intensity components over all of the NAS sectors.  

Moving along the peak contour ridge from “northwest” (t = 

11, d = 2.0) to “southeast” (t = 14,  d = 13), the mean NAS 
capacity changes by only 2%, but the mean NAS conflict 
workload intensity drops by 34% and the mean NAS transit 
workload intensity increases by 24%.  These changes in 
workload intensity reflect significant changes in the service 
time parameters.  

Although this regression ambiguity reduces the confidence 
with which one can distinguish between workload types in a 
critical benefits analysis, there is usually no practical reason for 
choosing any of the local peaks over the global peak.  The 
regression score provides a unique basis for choosing between 
the competing parameter sets.  The fact that the second highest 
score is a single integer step away from the global peak (and 
also satisfies the 95-percentile goal) increases our confidence 
that the global peak provides a reasonably valid estimate for the 
NAS workload intensity components.  

Nevertheless, the entire regression process is based on a 
cost function that employs arbitrary reward and penalty 
parameters.  The regression cost function is “objective” only in 
the sense that it converges to a quantitative goal by returning a 
unique global peak score. 

One can change that goal and its resulting solution set of 
model parameters in several ways.  We routinely vary the 
award/penalty ratio to seek an arbitrary percentile objective.  
The solution changes when we regress against data sets based 
on different peak traffic observations.  We find large 
differences in the solution sets when regressing against data 
derived from individual en route centers in the NAS [13]. 

The excess degrees of freedom in the model can be useful 
when extending, modifying, or improving it to handle new 
discoveries (such as the poor altitude change fraction fit) or 
new applications, such as hazardous weather.  However, when 
used in benefits studies, it is important to remember that its 

predictions reflect ambiguous conclusions that are based on 
subjective choices. 

III. EXTENSION TO HAZARDOUS WEATHER 

This section reviews and illustrates the extension of the 
model to estimate operational reductions in sector capacity 
resulting from hazardous weather blockage.  A weather 
avoidance field (WAF) [22] derived from gridded weather 
forecast data [23] is used to compute the fractional weather 
volume blockage in each sector.  The blockage fraction is then 
used to estimate sector workload growth and the resulting 
reduction in sector capacity relative to its fair weather capacity.   

A. Weather-Impacted  Workload Growth 

The weather-impacted sector capacity estimation is defined 
by the following equation: 

               
 

 
           

 

 
 

       

       
 . (10)    

This equation adds new workload terms to the fair weather 
workload intensity equation.  The additional recurring 
controller time consumed per aircraft rerouted around weather 

is wr, Fw is the fraction of the sector volume blocked by 

convective weather, and wt is the additional coordination time 
needed per weather-impacted sector hand-off. 

The term Fw, which is the fraction of sector airspace 
volume blocked by weather is computed by integrating the 
weather avoidance field over the sector volume.  We postulate 
that the additional service times are proportional to Fw and N.  

Because wr and wt are both unknown, we deduce their values 
by fitting the model to the sector peak counts during weather 
events. 

B. Computation of Weather Blockage Fraction  

From en route WAF data and 3D sector coordinates we 
compute the fractional volume blockage vm using horizontal 
slices of gridded WAF data specified at Nh altitudes.  Currently 
Nh = 4 and the altitudes are hn = 27, 31, 35, and 39 kft.   

We define the sector coordinates as a set of horizontal 
modules with constant horizontal shape over a given altitude 
span.  We vertically integrate the weather blockage inside all 
modules using the WAF values given at the four altitudes. 

The fractional sector volume blockage is given by 

    
∑   
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where M is the number of sector modules, the numerator is the 
volume within the sector that is effectively blocked by weather, 
and the denominator is the total sector volume.  Each module 
has a volume given by 

          , (12) 

where Am is the horizontal module area and Hm is the module 
altitude thickness. 

C. Mean Fair Weather Transit Time 

There are several alternative approaches to estimating mean 
fair weather sector transit time.   



Because sector definitions as well as wind and flow patterns 
change dynamically, the most accurate approach is to predict 
mean transit time from filed flight plans and current airspace 
definitions.  Historical averages or periodically updated sample 
measurements can be used when accuracy is less critical.  

For simple alerting applications in which sector airspace 
definitions are a significant determinant of transit time, one can 
relate transit time to the sector size (given as its linear 
horizontal dimension).  The relationship is 

      √   , (13) 

 
where Ae is the effective horizontal area of the sector and CT is 
a constant determined by regression to mean fair-weather 
transit times for many sectors during peak daily traffic periods. 

D.  Weather-Impacted Transit Time 

The forecast of T starts with an estimate of the fair-weather 
mean sector transit time, T0, as noted above. 

When the weather blockage Fw increases, T tends to 
decrease below T0 as weather forces flights to exit the sector.     

 In the limit, when the sector is completely blocked, T falls 
to zero.  We have determined the following empirical 
relationship between T and T0, 

          (    
 
)   , (14) 

where currently  = 0.32 and  = 8. 

 

E. Weather Model Regression 

We regressed the model individually to determine unknown 

values of the additional service times wr, and wt by fitting the 
model to the sector peak counts during weather events.  We 
examined events in which hazardous weather developed in 
sectors that were operating at or near capacity.   

Fig. 12 shows the results of a regression for wr and wt 
based on observed traffic collected over 28 days, from eight en 
route centers.  We found the heaviest and most frequent 
impacts in ZOB and ZDC, yet the majority of weather coverage 
resulted in less than 50% weather blockage.  

The vertical axis in the figure is w (defined as wt + wr) and 

the horizontal axis is the percentage of w that is wr.  The white 
“x” indicates the peak and shows that the additional 

coordination service time of wt = 60(0.2) = 12 seconds and the 

additional recurring service time of wr = 60(0.8) = 45 seconds 
yield the best regression results. 

The weather model results are summarized in Fig. 13, 
which plots normalized sector capacity, that is, weather-
impacted capacity divided by the constant fair-weather 
capacity, as a function of the weather blockage fraction. 

 

 

Figure 12.  Weather model regression results. 

Fig. 13 illustrates the normalized relationship for three 
different sector sizes.  Here we assume that the sectors are of 
fixed height so that their mean transit times vary as the square 
root of the sector volume.  This figure accounts for the growth 
in recurring service time, the linear decrease in mean transit 
time, and the reduction in usable sector volume with increasing 
weather blockage.   

 

Figure 13.  Normalized capacity model results. 

Sector capacity declines in a roughly exponential manner 
until the blockage exceeds 0.8 and the resulting growth in 
traffic density causes conflict workload to dominate.  The 
capacity then drops sharply to zero when the sector is totally 
blocked. 

These normalized curves are relatively insensitive to transit 
time because transit time variations have roughly the same 
effect on fair-weather capacity as weather-impacted capacity.   
This is a significant result because it indicates that accurate 
knowledge of transit time in unnecessary for applications based 
on normalized capacity. 



F. Application of the Weather Blockage Model 

We conclude with an illustration using archived traffic and 
weather data to simulate a procedure to add weather alerts to 
existing alerts based on en route sector demand.  The procedure 
adds two sector hazardous weather alert flags to an existing 
alerting display. These flags would forecast hazardous weather 
capacity reduction with a 2-hour horizon.   

In order to minimize distracting display fluctuations as 
forecast instability increases with look-ahead time, a smoothing 
algorithm is implemented.  As the look-ahead time for forecasts 
increases, the required forecast persistence is also increased.  
Forecast persistence is the number of consecutive forecast 
weather blockage updates required below a weather alert 
threshold before dropping the forecast weather alert flag 
associated with that threshold.  Currently, the persistence 
values are set to 1 (< 60 min look-ahead), 2 (60-90 minute 
look-ahead), and 3 (> 90 minute look-ahead). 

Fig. 14 illustrates the performance of the procedure.  The 
top panel shows the weather blockage fractions for the 
observed (black), 1-hr forecast (blue), and 2-hr forecast (red) 
vs. time.  In the next three panels, the actual peak sector aircraft 
count (per 15-minute bin) is plotted in blue.  The red curves are 
the model-generated normalized sector capacity estimates.  The 
bottom plot shows the progression of the alerts in 15-minute 
intervals as a function of forecast time, where blue dots 
indicate a normalized capacity estimate of 50-75%, and red 
indicates a normalized capacity estimate of 0-50%.  The 
estimates are reasonably timely, accurate, and stable. 

 

Figure 14.  Simulation of sector hazardous alert concept. 

 

IV. CONCLUSIONS 

The FAA’s current operational en route capacity model is 
based on workload, bases its sole empirical parameter on peak 
traffic counts, and provides accurate capacity estimates for 
many en route sectors in fair weather.   

It has served as the basis for a new expanded model, which 
aggregates workload into four basic types and obtains 
parameters by fitting to traffic counts, but which predicts 
capacity more accurately for all sectors, in all weather, and 
with enough workload specificity for quantitative benefits 
analyses.  

We plan to further refine the model with a term relating 
recurring workload to altitude change fraction.  We expect this 
to result in a regression with improved accuracy and better 
overall agreement between model capacities and peak daily 
counts. 
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