Airport Characterization for the Adaptation of Surface Congestion Management Approaches*

Hamsa Balakrishnan, Harshad Khadilkar, Lanie Sandberg and Tom G. Reynolds

Massachusetts Institute of Technology
MIT Lincoln Laboratory

*This work is sponsored by the Federal Aviation Administration under Air Force Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the author and are not necessarily endorsed by the United States Government.
Outline

• Motivation
• Framework for adapting surface congestion management approaches
• Airport characterization
 – Site visits
 – Surface visualizations
 – Operational data analysis
• Algorithm development
• Implementation design
• Testing and performance evaluation
Motivation: Scale of Problem

• Surface congestion increases taxi times, fuel burn and emissions
 – Nationally (2012 ASPM)
 • 31M min taxi-out delay; 15M min taxi-in delay
 – LGA (2012 ASPM)
 • 2M min taxi-out delay; 400K min taxi-in delay
 • 19K tons of fuel, 60K tons CO$_2$, 239 tons NOx, 127 tons HC
 – PHL (2012 ASPM)
 • 1.2M min taxi-out delay; 351K min taxi-in delay
 • 20K tons of fuel, 63K tons CO$_2$, 256 tons NOx, 150 tons HC
 – BOS (2012 ASPM)
 • 687K min taxi-out delay, 297K min taxi-in delay
 • 13K tons of fuel, 41K tons CO$_2$, 164 tons NOx, 83 tons HC

• Potential to mitigate these impacts through surface congestion management
Role of Departure Metering in Surface Congestion Management

- Departure metering just one element of required surface management toolset

- Departure metering manages pushbacks during congested periods
 - Decreased “engines-on” time, fuel burn & emissions

- In principle, can work at any congested airport, but details of successful implementation will vary
 - e.g., ATC facility vs. airline ramp tower

[A. Nakahara, 2012]
Examples of Departure Metering Approaches

<table>
<thead>
<tr>
<th>Aggregation Level</th>
<th>Examples</th>
<th>Field tests</th>
<th>Key Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airport-level</td>
<td>N-Control (Pushback Rate Control)</td>
<td>BOS</td>
<td>Aggregate airport pushback rate</td>
</tr>
<tr>
<td>Runway-level</td>
<td>Q-Control (TFDM prototype)</td>
<td>DFW</td>
<td>Runway-specific pushback rate</td>
</tr>
<tr>
<td>Airline-level</td>
<td>Collaborative Departure Queue Management</td>
<td>MEM, MCO</td>
<td>Airline-specific pushback quotas</td>
</tr>
<tr>
<td>Aircraft-level</td>
<td>Ground Metering Program</td>
<td>JFK</td>
<td>Aircraft-specific pushback time</td>
</tr>
<tr>
<td></td>
<td>Spot and Runway Departure Advisor (NASA)</td>
<td>DFW HITL simulation</td>
<td>Aircraft-specific spot release times</td>
</tr>
<tr>
<td></td>
<td>Airport Collaborative Decision Making (ACDM)</td>
<td>AMS, CDG, FRA, HEL, LHR</td>
<td>Aircraft-specific target start-up approval times (TSAT)</td>
</tr>
<tr>
<td></td>
<td>Departure Manager</td>
<td>ATH</td>
<td>Aircraft-specific target start-up approval times (TSAT)</td>
</tr>
</tbody>
</table>
Motivation: Need for Adaptation

- Prior surface congestion management efforts focused on specific airports
- Need to adapt approaches to multiple airports with different characteristics to gain system-wide benefits
Outline

• Motivation

• **Framework for adapting surface congestion management approaches**

• **Airport characterization**
 – Site visits
 – Surface visualizations
 – Operational data analysis

• Algorithm development

• Implementation design

• Testing and performance evaluation
Framework for Adapting Surface Congestion Management Approaches

- Airport Selection
- Airport Characterization
 - Site visits
 - Visualizations
 - Operational Data Analysis
- Algorithm Development
- Implementation Design
- Operational Testing & Performance Evaluation
- Refinement/Validation
- Results
Outline

• Motivation
• Framework for adapting surface congestion management approaches
 • Airport characterization
 – Site visits
 – Surface visualizations
 – Operational data analysis

• Algorithm development
• Implementation design
• Testing and performance evaluation
Airport Characterization: Site Visits

• Gain understanding of airport characteristics
 – Physical layout
 – Equipment levels
 – Air carrier and fleet mix
 – Other factors that influence throughput

• First-hand observations of operations
 – Standard procedures
 – Current challenges

• Expert opinions from ATC professionals
 – Explanation of operations
 – Answering congestion management questions
 – Identifying potential opportunities for mitigation
Sample Site Visit Observations: LGA

- Insights into:
 - Physical tower layout
 - ATC positions and relative locations
 - Equipment availability
 - Standard operating practices
Sample Site Visit Observations: LGA

- Typical taxi routes & surface congestion issues

Extended departure taxi route to queue aircraft during periods of high demand or with re-routes

Nominal departure taxi route via B and P

Queues observed to form short of taxiway GG (hand-off point between GCs)

Nominal arrival taxi route: depart 22, taxi via B and A

Single aircraft push-back fully blocks alley-way

Single aircraft push-back can block arrival taxi route
Airport Characterization: Surface Visualizations

• Use airport surveillance data archives (e.g., ASDE-X)
• Allows detailed observations for a range of airport operating conditions beyond those seen on site visits
• Surface procedures across configurations
 – Standard taxi routes
 – Runway entry, exit and crossing locations
 – Aircraft holding/queuing locations
• Dynamics of demand over extended time intervals
 – At gate
 – At terminal
 – At runway
• Dynamics of interactions between arrivals and departures
Sample Surface Visualization:
LGA 22 | 13
Sample Surface Visualization:
PHL 27R | 27 L
Sample Surface Visualization:
BOS 22L, 27 | 22R
Airport Characterization: Operational Data Analysis

- Historical data from ASPM and ASDE-X

- Quantification of airport characteristics & performance
 - Runway configuration breakdown
 - Traffic demand
 - Queue sizes
 - Taxi time
 - Airline mix

BOS Runway Configuration Usage; 6/1/11-8/31/11

BOS Surface Metrics (22L,27|22R,22L); 6/1/11-8/31/11

- Number of Active Departures
- Queue Size
- Taxi Time
Operational Data Analysis: Runway Configuration Use

- Congestion management needs to be tailored to dominant runway configurations
 - BOS: two dominant configurations
 - LGA: multiple configurations
 - PHL: one dominant configuration

LGA Runway Configuration Usage; 6/1/11-8/31/11

- 4 | 13: 12%
- 4 | 31: 37%
- 13 | 4, 13: 17%
- 31 | 4: 26%
- 22 | 13: 17%
- 22 | 31: 26%
- 22 | 22: 26%

PHL Runway Configuration Usage; 6/1/11-8/31/11

- 9R | 9L: 26%
- 27R | 27L: 77%
- 27L | 27L: 17%
- 9R | 9R: 17%
Operational Data Analysis: Airline Mix

- Congestion management implementation may vary significantly with airline mix
 - PHL: dominant carrier
 - BOS/LGA: mixed operators

All data from 6/1/11-31/8/11
Operational Data Analysis: Traffic Demand

- Characteristics of airport traffic for dominant configurations
 - Departure demand
 - Queue size
 - Taxi time

- Instrumental in tuning congestion management control variables and strategies
Operational Data Analysis: PHL Traffic Demand

PHL Average Number of Arrivals and Departures; 6/1/11-8/31/11

Number of Aircraft

Local time (hrs)
Operational Data Analysis: Throughput Saturation

- Differences between runway configurations at an airport
 - Departure rate
 - Saturation point
Airport Characterization: Implications for Congestion Management

- **BOS:**
 - Evening peak
 - Two main configurations
 - Mix of airlines
 - Aggregate solution, tailored to two runway configurations, primarily necessary in evening

- **LGA:**
 - Constant high demand
 - Mix of airlines/configurations
 - Aggregate solution, needed most of operating day

- **PHL:**
 - Intermittent peak demand
 - Dominant runway configuration
 - Dominant airline
 - Congestion management needed in demand peaks; potential for airline-specific solution
Outline

• Motivation

• Framework for adapting surface congestion management approaches

• Airport characterization
 – Site visits
 – Surface visualizations
 – Operational data analysis

• Algorithm development

• Implementation design

• Testing and performance evaluation
Algorithm Development

- Algorithm concept

- Need curve characteristics for each airport/configuration

| Airport | Configuration (arrivals | departures) | Saturation point, N^* (# active dep.) | Saturation Throughput, T^* (ac/hr) |
|---------|-------------------------|--|-------------------------------------|
| BOS | 4R, 4L | 9, 4R | 17 | 48 |
| | 22L, 27 | 22R, 22L | 13 | 45 |
| LGA | 22 | 13 | 11 | 36 |
| | 31 | 4 | 15 | 40 |
| | 22 | 31 | 18 | 42 |
| | 4 | 13 | 15 | 36 |
| PHL | 27R | 27L | 12 | 48 |
| | 9R | 9L | 20 | 40 |
Algorithm Development: Parametric Dependencies of Throughput

- Departure throughput dependencies vary by airport
 - **BOS**: Arrival throughput, departure demand, departure fleet mix (props)
 - **LGA**: Arrival throughput, departure demand, departure route availability
 - **PHL**: Arrival throughput, departure fleet mix (props), fleet mix (Heavy aircraft), departure route availability

- Reliable throughput predictions are important for effective metering
 - To avoid low runway utilization
 - To avoid excessive surface congestion

(mean, std deviation) of departure throughput/15 min BOS in 22L, 27 | 22R, 22L under saturation

[I. Simaiakis, 2012]
Outline

- Motivation
- Framework for adapting surface congestion management approaches
- Airport characterization
 - Site visits
 - Surface visualizations
 - Operational data analysis
- Algorithm development
- Implementation design
- Testing and performance evaluation
Implementation Design

- Airport/ATC tower operating characteristics
 - Ramp or FAA tower-controlled pushbacks
 - Tower layout and equipment

- Algorithm information input requirements
 - Capacity and demand forecasts

- Algorithm execution platform

- Algorithm output format

- Algorithm execution procedures

Tablet 1: Data input

Tablet 2: Recommended push-back rate display

BOS Tower Cab

Capacity (Airport config.), Weather (VMC/IMC)
Demand (Aircraft with Ground/Local Control, Expected arrivals)
Outline

• Motivation

• Framework for adapting surface congestion management approaches

• Airport characterization
 – Site visits
 – Surface visualizations
 – Operational data analysis

• Algorithm development

• Implementation design

• Testing and performance evaluation
Operational Testing and Performance Evaluation

• Operational testing
 – Validity and robustness under actual operational conditions
 – Basis for refinement

• Benefits/cost assessment
 – Compare surface congestion metrics before/after deployment
 – Monetized benefits basis for investment analysis

• Airport operational efficiency
 – Runway utilization
 – Departure spacing
Sample Surface Visualization:
BOS 22L, 27 | 22R during Metering (2011)
Summary

- Surface congestion management important to fuel burn/emissions reduction at many airports
- Existing deployments focused on specific airports: techniques needed for adaptation to more airports and operating conditions
- Adaptation framework proposed
- Airport characterization is an important first step:
 - First-hand observations and opportunities to ask questions of ATC professionals with site visits
 - Qualitative analysis with surface visualizations
 - Quantitative analysis with operational data
- Significant (6-14%) potential benefits from departure metering
 - **BOS**: 900K gallons savings of jet fuel per year
 - **LGA**: Two most frequently-used configurations in VMC alone would yield 550K gallons savings of jet fuel per year, even after accounting for gate-conflicts
 - **PHL**: 2.9M gallons savings of jet fuel per year