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Abstract—Over the past several years there have been proposals 

and discussions regarding a move from the use of controlled 

times of departure (CTDs) to controlled times of arrival (CTAs) 

for ground delay programs (GDPs) in the U.S. In this paper we 

show that, by combining control by CTA with the judicious use 

of en route speed control, significant improvements to GDP 

performance can be achieved. Our analysis of this problem 

includes both new GDP control procedures and also new flight 

operator GDP planning models. While the ability to achieve all 

the benefits we describe will require NextGen capabilities, 

substantial performance improvements could be obtained even 

with a near-term implementation.  

Keywords- Speed Control, Collaborative Decision Making, 

Traffic Management Initiatives, Integer Programming 

I. INTRODUCTION 

Airports throughout the U.S. National Airspace System 
(NAS) regularly encounter elevated levels of congestion. When 
faced with inclement weather, the capacity of airports is often 
insufficient to accommodate demand and the potential effects 
on congestion are particularly burdensome. These 
capacity/demand imbalances will often lead the Federal 
Aviation Administration (FAA) air traffic managers to impose 
Ground Delay Programs (GDPs) at airports or Airspace Flow 
Programs (AFPs) in the airspace. Such initiatives reduce the 
rate of arriving flights into the airport or region of airspace to a 
level more compatible with the resource’s reduced capacity. 
Specifically, flights receive later departure times from their 
origin airports commensurate with the rate of arrival desired by 
the affected airport or airspace region. These programs lower 
flight operator operational costs and reduce the workload 
imposed on air traffic controllers by mitigating the potential 
resulting airspace congestion.   

Traffic Flow Management Initiatives (TMIs) in the U.S., 
such as GDPs and AFPs, operate under a philosophy known as 
Collaborative Decision Making (CDM). In this paradigm, 
decisions on flight release times are made by airlines and air 
navigation service providers (ANSPs) in a joint decision 
process.  CDM processes involve both information sharing  and 
specialized resource allocation mechanisms. [1,2]. 

GDP planning procedures universally start by considering 
constraints on airport arrival rates and set corresponding arrival 
flows, which generally are converted to specific flight arrival 

times / CTAs. These in turn are converted to CTDs by 
subtracting an estimated flight time from the CTA. The reason 
this is done is that a CTD is much easier to monitor and 
implement than a CTA. Airport tower controllers can monitor 
flight departure times and prevent controlled flights from 
departing early. On the other hand, it can be difficult, costly 
and even dangerous to insure a set of airborne flights meet 
CTA constraints. Nonetheless, for many years CDM 
developers and researchers have expressed the goal of 
controlling based only on CTAs. This is attractive because it 
gives flight operators more flexibility and allows both for more 
dynamic flight planning and a greater ability to do system-wide 
tradeoffs. Even though control by CTA was an expressed goal 
early in CDM development, it has not yet been implemented. 
The reasons are perhaps a combination the implementation 
challenges and the lack of credible quantification of the 
benefits. 

As both U.S. and worldwide air traffic flow management 
moves toward time-based metering and eventually trajectory 
based operations (TBO), the use of CTAs for a variety of goals 
should become routine. Thus, we argue that the implementation 
challenges just mentioned should decrease and eventually go 
away. The experimental results in this paper provide at least a 
first step in overcoming the second obstacle by demonstrating 
significant benefits. 

CDM procedures were first described in the literature by 
Wambsganss and Chang et al. [1,3]. A body of research has 
developed around both GDP planning and CDM. One research 
stream has modeled GDP uncertainty and incorporated 
stochastic components into integer programming models 
[4,5,6] for GDP planning. GDP decision support tools now 
mitigate the impact of weather uncertainty by exempting flights 
whose origins are outside a computed radius [7]. The theory 
underlying this process and extensions are provided in [8]. 
Other work has formalized and then extended CDM resource 
allocation processes [9]; related work extended the 
compression algorithm to include a more comprehensive slot 
exchange process [10]. Vossen et al. [11] developed metrics of 
equity and then showed how CDM procedures could be 
improved to deliver a better level of equity. CDM was later 
extended for use in a multi-resource context by Fearing and 
Barnhart [12]. This philosophy has also been proposed in 
departure queueing by Briton et al. and Bhadra et al. [13,14].  



Speed control has been widely studied for a variety of air 
traffic management applications. At the tactical level Neuman 
and Erzberger [15] described a variety of sequencing and 
spacing algorithms designed to reduce fuel consumption and en 
route/arrival delay. These algorithms laid the foundation for the 
Traffic Management Advisor (TMA) system currently used at 
many airports across the country to manage flights up to 200 
nmi from the airport. An enhanced version of the system called 
The Terminal Area Precision Scheduling and Spacing System 
(TAPSS) was later developed [16]. The technology was also 
proposed for cooperative use in Traffic Flow Programs [17]. 
Carrier-centric approaches such as The Airline Based En Route 
Sequencing and Spacing tool have also been proposed. The 
tool sends speed advisories to the Airline Operations Centers 
(AOC)s to allow crews to more actively manage their speeds 
en route [18]. 

In recent years, the horizon for such air traffic 

management initiatives has also moved farther away from the 

airport. Airservices Australia developed the ATM Long Range 

Optimal Flow Tool (ALOFT) to allow pilots to control speeds 

up to 1000 nmi away from the airport. In so doing, they 

achieved an estimated fuel savings of nearly 1 million kg in 

2008 [19]. Since then, they have also used additional metering 

fixes to better manage trajectory and arrival time uncertainty 

[20]. Delta Airlines achieved an estimated $8 million in fuel 

savings over a 20-month period using a dispatch monitored 

speed control program known as Attila[21]. At Schiphol, a 

ground based planning system that interfaced with aircraft 

through datalink was used to remove vectoring in their 

nighttime operations [22]. Knorr et al. [23] identified 

substantial inefficiencies in the terminal phase of flights and 

characterized the benefit pool achieved by “transferring” 

terminal delays to the en route phase of flight. Jones et al. [24] 

developed a bi-criteria integer programming model to 

facilitate delay transfer away from terminal airspace and 

demonstrated that a substantial proportion of the potential 

delay transfer benefit could be realized through this approach. 

Speed control measures have also been proposed for 

capacity allocation in GDPs. Delgado and Prats showed that it 

was possible to absorb some of the delay assigned to flights 

within the GDP en route and maintain the planned level of fuel 

consumption [25, 26, 27]. The authors also showed that by 

flying earlier and at a slower speed, a considerable portion of 

the imposed delay could be recovered in the event of an early 

GDP cancellation. Jones and Lovell showed that speed control 

could also be used to help curb the exemption bias in GDP slot 

assignments [28].  
In this paper, we consider replacing the use of a CTD with 

a CTA in GDP planning and control. The principal change is 
conceptually quite simple: flights and, by association, flight 
operators, are assigned CTAs rather than CTDs. When a GDP 
is revised, the assigned CTAs rather than the assigned CTDs 
are adjusted. Because of added flexibility provided by the use 
of CTAs, we also propose the elimination of GDP flight 
exemptions, instead allowing flight operators to effectively 
make exemption decisions regarding their own flights. To 
effect these changes we only need to make minor changes to 
the existing CDM/GDP allocation procedures. We propose a 

new flight operator GDP planning model, specifically a 
scenario-based stochastic integer programming model that 
determines a cancellation and substitution plan for each carrier. 
The model matches the carrier’s  flights to the assigned arrival 
capacity (CTAs). In doing this, it takes into account the ability 
to adjust flight speeds en route, e.g. the model might assign a 
flight an “early” departure time, consistent with a relatively 
slow speed but anticipate the ability for the flight to increase its 
speed should the weather clear at the destination and additional 
capacity be assigned to the carrier. The integer programming 
models builds on the prior literature on stochastic models for 
GDP planning and the use of speed control extends the work of 
Delgado and Prats.  In Section II we provide a description of 
the CDM GDP process and our modifications to it. We also 
provide background on aircraft fuel burn characteristics and 
how they impact speed control processes. In section III we 
present our models along with our methodological 
assumptions. In Section IV we apply our models to a case 
study based on data obtained at Atlanta Hartsfield-Jackson 
Airport and demonstrate the ability of our models to improve 
flight operator performance metrics.  

II. BACKGROUND 

A. CDM Assignment Practices 

The CDM resource allocation mechanism for GDP 
planning consists of three components: capacity allocation, 
schedule adjustments, and slot exchange. As discussed above, 
while control is executed based on a CTD, planning is done 
based on a CTA. Specifically, arrival capacity is allocated to 
carriers using a mechanism known as Ration-by-Schedule 
(RBS). In RBS, flights are assigned to arrival slots based on the 
order they appeared in the original schedule. This procedure 
provides an equitable initial allocation and removes incentives 
for carriers to report inaccurate information. Once capacity has 
been assigned, schedule adjustments are typically performed by 
allowing airlines to cancel and substitute flights based on their 
own priorities. To improve the overall footprint, an inter-airline 
substitution procedure known as compression is used facilitate 
trades. A notional diagram of the process is shown in Figure 1. 

 

Figure 1: Flight assignment under a CDM framework 

When a GDP is issued at an airport, air traffic managers at 
the Air Traffic Control System Command Center (ATCSCC) 
decide the planned capacity and duration of the GDP based on 
the predicted conditions over the course of the day. They also 
determine the radius of exemption for the GDP. This 
exemption radius defines the set of flights that will receive 
ground delays. Once this parameter has been determined there 
are three pools of flights that are affected. Flights inside the 
exemption radius receive ground delays based on their order in 
the schedule. Flights on the ground outside of the radius are 
exempted from the GDP and receive no delays. In addition, all 



flights already in the air, regardless of their origin, are 
exempted from the GDP.  

Figure 2a illustrates an example RBS allocation where the 
two exempt flights identified on the left are both airborne at the 
time of allocation. After the RBS allocation, carriers may freely 
substitute flights based on their own priorities. They may also 
choose to cancel flights and make substitutions using the 
vacated slots. A notional example of this process is shown in 
Figure 2b. Here, AA has chosen to cancel AA561 and move 
AA321 into its slot. AA alternatively could have chosen to 
swap the slots of the two flights. In either case, once the 
appropriate arrival changes were made, the arrival times 
(CTAs) would be converted to departure times (CTDs) and 
appropriate ground delays. Although DAL and UA both also 
have two slots, they are unable to make any changes since in 
each case one of their two slots is occupied by an airborne 
flight whose arrival time cannot be adjusted.  If DAL and UA 
could reassign the slots of their airborne flights, then each 
airline could improve the number of flights arriving less than 
15 minutes after their scheduled arrival time. An example of 
this exchange is shown in Figure 2c.  

 

 

Figure 2a: An example of flight allocation in Distance Based Ration-by-

Schedule. Exempt flights receive priority. 

 

 

 

Figure 2b: Cancellation and Substitution process in current CDM framework. 

 

 

Figure 2c: Cancellation and Substitution process without exemptions. Delta 
and United can subsitute and improve their on-time performance. 

The advantages illustrated by these examples underlie the 
one component of the benefits that can be achieved by 
combining control by CTA with dynamic speed adjustments. 
Similar improvements to the performance of the compression 
algorithm can be achieved by allowing adjustments to airborne 
flights. We note a second source of benefits have the same 
origin as those investigated by Delgado and Prats [25,27], 
namely the ability of airborne flights to more quickly react to 
increases in arrival capacity resulting from weather changes.   

B. Fuel Burn Implications of Speed Changes 

The relationship between fuel efficiency (specific range) 

and Mach number is illustrated in Figure 4. In this 

relationship, as the Mach number of the aircraft increases, its 

fuel efficiency will also increase to a point known as the 

maximum range, beyond which it begins to decline. In 

general, the shape of this curve in the vicinity of the optimum 

is relatively flat. The flatness of this curve implies that the 

speed of the aircraft can be adjusted (within a reasonable 

range) to absorb the intended delay with a minimal increase in 

fuel burn. 
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Figure 4: Variation in Aircraft fuel efficiency with speed. 

 

In [25] it was suggested that GDP flights receive an early 
release time and fly at the minimum possible speed such that 



their specific range could be maintained. In the event that the 
weather clears prior to the end of the GDP, the flight can get in 
the air earlier and can fly faster to recover some of the delay. In 
[27] the same authors examine the effect of the exemption 
radius on GDP performance when applying their original idea. 
In [28] speed control was applied to the exempt flights while 
flights inside the radius received only ground delays. Each of 
these studies examined trades between delaying flights in the 
air and delaying flights on the ground but in all cases the 
assignments were made by the ANSP. They serve as a 
significant first step, however, as these trade-offs may be more 
effective when they are performed by the carriers. If a flight on 
the ground receives a 15-minute reduction in delay at the 
expense of a flight in the air, the benefit to that flight is 
irrelevant if the carrier decides to cancel the flight on the 
ground. For reasons such as this we would like to propose a 
more carrier-centric alternative to these strategies. In the 
following section we present a model designed to allow 
carriers to control their own flights using a combination of 
ground delay, speed control and cancelations. We describe the 
framework for the models and context in which we envision 
the assignment process operating.  

III. NEW MODELS AND ARCHITECTURE  

In this section, we describe our CTA-based architecture 

(III-A), present our new airline optimization model to support 

the airline cancellation and substitution process (III-B) and 

describe the model used to represent compression and 

revisions in our experiments (III-C).   

A. Architecture  

The previous two sections have described in general terms 

the modifications that we envision to major components of the 

process. Here we more specifically define the architecture and 

explain some of the important changes. While the new process 

uses the RBS mechanism, the exemption radius is eliminated. 

Once capacity is allocated to carriers, each carrier can use both 

speed control and ground delays to manage their substitution 

and cancellation decisions. Since no exemption radius has 

been imposed, carriers must be more strategic about their 

substitution process because in the event of an early weather 

clearance they will want to take advantage of capacity 

increases, e.g. by speeding up airborne flights. Our scenario 

based stochastic model (Section III-B) is designed to facilitate 

that end. Each scenario accounts for a possibility of the 

weather clearing at different times and the associated increase 

in capacity. The goal is to position the flights in slots that 

allow them to make the best use of capacity under all 

scenarios. The fact that slot assignment and the effective use 

of speed control are key to evaluating the impact of this new 

approach implies that proper evaluation of its effectiveness 

requires experiments that involve GDP revisions. The manner 

in which we model revisions is discussed both later in this 

section and in Section III-C. 

TABLE I gives the basic steps in our CTA-based 

architecture.  

 

 

TABLE I: CTA-Based Flight Assignment Architecture 

Step 1 [FAA].  
1a: Assign a slot to each airborne flight based on the flight’s 

expected time of arrival. 

1b. Assign a slot to all flights on the ground using RBS. 

1c. Create a list of slots (and CTAs) owned by each airline 

based on the allocation from both steps 1a and 1b.  

Step 2 [Airlines]. Execute cancellation and substitution 

processes and adjust flight-to-CTA assignments. Assign a 

departure time to each flight 

Step 3 [FAA]. Execute compression, adjusting assignments 

and filling any unusable slots.  

      This process looks almost identical to the existing process 

illustrated in Figure 1. However, there are some subtle 

differences. First, none of the flights on the ground at the start 

of the GDP are exempted. Second, when the airlines perform 

their cancellations and substitutions, and also when the FAA 

performs compression (steps 2 and 3), both airborne flights 

and flights on the ground should be considered. The 

consideration of flights in the air imposes a substantial new 

information requirement: the (possibly very tight) limits on the 

degree to which their arrival times can be adjusted. Third, 

today the assignment of a departure time (CTD) is performed 

by subtracting a nominal flight time from the CTA. Under this 

new approach the airlines have substantial flexibility in 

assigning the departure time, e.g. as in Delgado and Prats 

[25,27], assuming an initial “slow” speed while anticipating 

possible speed-ups if weather conditions change. This added 

airline flexibility implies that when the airlines perform their 

cancellation and substitution process, they have a rich set of 

alternatives to consider and the opportunity to improve 

performance. In the next section, we present an optimization 

model to address this new airline decision problem. 

      Another very important challenge associated with this new 

approach is the manner in which GDP controls are 

dynamically updated over time. Today a variety of possible 

GDP revisions might take place as weather conditions change 

at the destination airport. Perhaps the simplest is a cancellation 

of the GDP in the event of clearance of poor weather. If this 

occurs, all issued ground delays are immediately rescinded 

and the impacted flights can immediately take off. An 

equivalent action in a CTA-based architecture would be to 

allow flights on the ground to immediately depart and flights 

in the air increase their speed, to the extent feasible, in order to 

arrive at an earlier time if this is desired. It is difficult to assess 

a priori whether such a complete cancellation might ever be 

appropriate under a CTA-based system. However, it is clear 

that new GDP revision models and controls will be required. 

In particular, it is likely that “revisions” will be required not 

only based on major changes in conditions at the destination 

airport but also more minor disturbances that impact the flight 

times of en route flights. It is likely that such models could 

build on the recent experience with airborne speed control 

[17,18,19,20,21,22] and the growing body of research 

[23,24,25,26,27,28] on the topic. Of course, this also relates to 

current efforts on time-based metering and TBO.  



In the current research we have not attempted to addresses 

all the nuances of GDP revisions under CTA controls. This 

would certainly represent another significant research 

contribution. Rather, to estimate the benefits of this new 

architecture, we evaluate a relatively simple scenario in which 

weather clears at a random time and use an optimization 

model [9] that represents the combined effect of RBS and 

compression in reassigning CTAs based on the newly 

available capacity. This model is described in Section III-C.    

B. Model to Suport Airline Subsitution and Cancellation 

Process 

Under the new architecture and considering both the 
possibility of en route speed adjustments and no flight 
exemptions, each airline has more control over the disposition 
of its own flights. Since GDPs are often cancelled prior to their 
planned end time, it behooves airlines to hedge between the 
prospect of early and on-time cancellation. Such hedging is 
effectively done today by the FAA through the exemption 
radius. The challenge for an airline lies in positioning flights in 
the appropriate slots to best deal with all possibilities. To do so 
we adapt stochastic models developed earlier [4,5,8] from an 
FAA/ANSP perspective to the perspective of a specific airline.   

To understand this model, consider the deterministic case 
where the set of available slots, i.e. the CTAs assigned to that 
airline, is known with certainty, e.g. as described in [10]. This 
is a simple assignment problem where flights are assigned to 
slots allowing for the possibility that some flights may be 
canceled at a cost. Since this model is solved by a specific 
airline, we can assume the availability of a rich cost function 
that takes into account various factors regarding flight, crew 
and passenger status, passenger count, etc.    

Capacity uncertainty is modeled using a set of scenarios:  
each scenario is characterized by the time at which that 
scenario becomes known, the revised set of slots, i.e. additional 
capacity represented by the augmentation of the existing slots 
with a set of additional slots, and a probability. An additional 
set of variables indicates how the initial assignment is adjusted 
when the new capacity becomes available. In defining the data 
underlying this model, the differences in constraints underlying 
airborne flights and flights on the ground must be taken into 
account. For example, if a flight was assigned a CTA of 4:00 
and, at the time the new scenario was effective that flight was 
airborne, then the flight might be restricted to revised CTAs not 
earlier than 3:50 based on limitations on speedup options (no 
more than 10 minutes). On the other hand, if a flight on the 
ground was assigned a CTA of 4:00 and that flight still had one 
hour to serve on its ground delay, then that flight could be 
assigned any departure time within the next hour and in order 
to meet any new assigned CTA between 3:00 and 4:00. The air 
carriers should assign both a CTA and departure time to each 
flight. For the present experiments, we assume the departure 
time assigned is the earliest possible departure time that can 
meet the assigned CTA. This approach provides maximum 
flexibility where weather scenarios only allow for capacity 
increases. We recognize that ideally the optimization model 
should contain both departure time and arrival time variables – 
we leave such a model to future research.    

This model certainly has some substantial data 
requirements, most notably the scenario information. There are 
two aspects to generating the slot lists for each scenario. The 
first is defining the set of slots available to all carriers and the 
second is how those slots are assigned to each carrier. There 
has been prior research on the first aspect, but this certainly 
would have to be adapted to this new context. For the purposes 
of this paper, we use representative/stylized information that 
captures the essential aspects of the problem setting. Regarding 
the second aspect, we use a basic RBS reallocation that (by 
necessity) cannot take into account the status (and slot 
assignment) of each carrier’s flights. Thus, this reallocation 
must be viewed as an approximation; however, it only impacts 
cost assigned to the initial slot assignment and so it impacts 
only the quality of the solution and not its feasibility. We can 
judge the overall quality of our approach by the results of our 
simulation experiments. We also note that some air carriers 
might wish to use other processes; thus, this model could be 
viewed as a surrogate for any number of internal airline 
decision support processes.     

The specific integer programming problem formulation is 
given below. Note that this model includes a subscript for 
airlines – in practice, each airline will solve its own model. 

Parameters: 

Fa ≡ The set of all flights available to airline a 

A ≡ The set of all airlines 

Sa- ≡ The set of all slots available to airline a 

Efa≡ The set of all slots available to flight f at stage 1 prior to 

first probable end of the GDP available to airline a 

Pfa≡ The set of all slots available to flight f at stage 1 following 

the first probable end of the GDP available to airline a 

Kfsq≡ The set of all slots available to flight f at stage 2 in 

scenario q from slot s available to airline a 

dfsa
q≡ Cost of delaying flight f to slot s owned by airlines a in 

scenario q  

cfa≡The cost of cancelling flight f operated by airline a 

qp   The probability of scenario q occurring  
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Constraint (2) ensures that for each airline, every flight is 
either assigned to a slot or cancelled. Constraint (3) ensures 
that no more than one flight is assigned to a slot in the first 
stage of the problem. Constraint (4) ensures that no more than 
one flight is assigned to a slot in the second stage of the 
problem for all scenarios. Constraint (5) ensures that if a flight 
is assigned to a slot in the first stage prior to the first feasible 
weather clearance time, it must be assigned to the same slot in 
the second stage for all scenarios. Constraint (6) ensures that if 
a flight is assigned to a slot in the first stage after the first 
feasible weather clearance time, it must be assigned to a slot 
that is reachable from that slot in the second stage. Note that 
this constraint, through the definition of Kfsqa, restricts the set of 
slots to which a flight can be reassigned based on flight status 
and the various timing restrictions. Constraint (7) reflects that 
our assignment variables are binary. Our objective is to 
minimize the expected cost of the flight delays over all 
scenarios plus the cost of flight cancellations.  

C. Compression and GDP Revisions 

To carry out our experiments, we must both execute 
compression as part of the initial allocation process (see Table 
I) and also perform a slot reallocation for the case of a GDP 
revision. Under current practices revisions are performed using 
a modified application of RBS that takes into account both 
flight status and the new set of available slots. Compression is 
also typically performed. Very often a combined 
RBS/compression process is executed called RBS++. In [10], an 
optimization model is defined that provides both the 
functionality of compression and RBS++.  We use this model in 
our experiments for both the initial compression step and also 
the revision process. This model actually provides carriers with 
more flexibility in the application of compression. However, 
for our purposes here we only wish to mimic the basic 
processes.  Specifically, the model employs a set of “goal 
slots,” with one such slot assigned to each flight to be assigned. 
To mimic compression the goal slot assigned to each flight is 
the RBS slot for that flight. Other assignments can be used by 
carriers to implement various flight prioritization schemes. 

Parameters: 

F ≡ The set of all flights 

A ≡ The set of all airlines 

S- ≡ The set of all slots 

T ≡ The set of all time periods 

Fa ≡ The set of all flights belonging to airline a 

Ia- ≡ The set of all goal slots belonging to airline a 

Rf≡ The set of slots within acceptable for flight f 

Sft ≡ The set of all slots available to flight f in period t 

st   The time corresponding to slot s 

f   The time corresponding to the goal slot of flight f 

Variables 

1 if flight  of airline  is assigned to slot  
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0  otherwise 
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Equation (9) ensures that every flight is assigned to exactly 
one slot. Constraint (10) ensures that each slot is assigned to no 
more than one flight. Constraint (11) reflects that our 
assignment variables are binary. The objective of the model is 
to lexicographically minimize the distance of the flights from 
their goal slots. It accomplishes this minimization by using 
coefficients that grow super-linearly. This mimics the impact of 
compression, which seeks to find a slot as close as possible to 
the flight’s RBS slot in the case where that flight cannot be 
feasibly assigned to its RBS slot.  

IV. RESULTS AND DISCUSSION 

A. Experimental Description 

To conduct our studies we selected data collected from 

Atlanta Hartsfield-Jackson Airport on May 1, 2011. The 

weather conditions were clear and sunny and all runways were 

active. The data were obtained from a file generated by TFMS 

in conjunction with an ASDX file, the combination of which 

listed flight numbers, carrier, collection time, ETA, scheduled 

time of arrival (STA), the origin airport, actual time of 

departure, aircraft position, aircraft type, arrival time. 

The airport acceptance rates on an hour-by-hour basis 

varied from 56 to 101 flights per hour. Since this dataset was 

not taken on a day on which a GDP was issued, a hypothetical 

GDP was superimposed on the data. A 5 hour GDP was 

assigned to the airport over the hours of 16:00-21:00 GMT. 

Flights inside the exemption radius were assigned ground 

delays. Flights on the ground that originated from airports 

outside of the radius as well as flights in the cruise phase of 

flight at the start of the GDP were allocated slots over the 

range achievable by the aircraft. The model used flight 

trajectories observed in the data over the day of operations. 

Speed control directives were issued over the period of time 

that the aircraft reached an altitude of 35,000 ft. Based on 

these trajectories we calculated the distance traveled. As a 

baseline case flights were given a nominal cruise speed based 



on the aircraft performance listed on the BADA database. This 

database was also used to derive a set of speeds at which each 

aircraft could fly. In general we used these speeds as 

guidelines; however, speeds on all aircraft were restricted to 

+/-0.02 of their performance maximum/minimum. Also, when 

aircraft were capable of flying above Mach 0.85 or below 

0.72, aircraft speeds were restricted to a maximum of 0.85 or a 

minimum 0.72 respectively. CTAs for ground delayed flights 

could correspond to any time at or following the scheduled 

time of arrival of the flight. 

A baseline run was used to evaluate the delay performance 

with no intervention. On these runs capacity was allocated to 

airlines using DB-RBS. A deterministic version of the 

substitution and cancellation model was used which did not 

account for the possibility of early clearance. A compression 

model was then adopted to improve throughput. To understand 

the full extent of the performance we tested the computation 

run time of each model using a dual core system with four Intel 

Xeon X5535 processors and 12 GB of memory in a 64 bit 

environment. The models were coded in Python 2.7 using a 

GUROBI solver.  

B. The Cost of Delay and Cancellation 

If this proposed scheme were implemented, each airline 
would compute the cost of delay based on their internal cost 
measures; however, to perform a computational experiment we 
needed to find a suitable proxy. In this paper we chose to start 
with the cost model presented in Vakili and Ball [29], which 
draws from ATA data and models from Metron Aviation. The 
model assumes that the direct operating cost per minute of 
block time is free during the first 15 minutes. After 15 minutes 
the cost jumps to $64 in the air and $32 on the ground. Since 
our airborne delay is essentially free from a fuel cost standpoint 
and fuel typically accounts for roughly half the delay costs we 
decided to use an equal cost for ground and air delay. Updating 
for yearly changes in delay costs we found the cost on both the 
ground and the air was $40[30]. The Vakili and Ball approach 
also assumes that the cost per minute of passenger delay is 
$34.88 per hour or $34.88/60 = $0.5813 per minute.  Since the 
airlines do not suffer the same degree of impact as customers 
on a per minute basis the approach approximates the cost by 
multiplying passenger cost by 1/6 and uses a cost of $0.1 per 
minute. Adopting the same process using 2013 passenger costs 
we find that the additional airline cost is $0.125 per minute, per 
passenger. An expression for the cost function is show below: 
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where P is the number of passengers on the flight and Mp is the 
maximum amount of time before the delay cost levels off. 
When the cost levels off it does not matter whether the airline 
delays the flight an additional minute or a day. Thus we assume 
the cost to cancel a flight is the cost at level off. Aircraft 
specifications were used to determine the number of passengers 
on a given aircraft. Using the 2013 average reported in IATA 
our analysis assumed a load factor 0.8 on all flights [31]. We 
set Mp to a value of 90. 

C. Effect on Airlines Metrics with no GDP cancellation 

To better study the distribution of delay we reduced the 

number of flights to consider just the 5 largest carriers.  A 

baseline run was performed using a conventional GDP 

procedure. Capacity was allocated with DB-RBS and 

cancellations and substitutions were made using a 

deterministic model. The resulting performance for a GDP 

with a Planned Airport Arrival Rate (PAAR) of 40 is shown in 

TABLE II. The percentage of cancellations remained 

relatively consistent across carriers ranging between 25% and 

33.33%. Delta and AirTran, however, both exhibit stronger 

delay performance in traditional GDPs. This is understandable 

as Delta and AirTran both control a larger pool of exempt 

flights than regional carriers and those with a smaller presence 

at the airport.  

To evaluate CTA-based architecture and new planning 

modes, we used 5 capacity profiles. The set consisted of a 

complete GDP and weather clearances of 15, 30, 45 and 60 

minutes early. Each scenario was assumed to be equally 

probable. The results of our test are shown in TABLE III.  The 

tests yielded noticeably different results relative to the 

baseline. All carriers reduced their number of cancellations 

except for American Airlines, which only controlled 3 flights.   

TABLE II: AIRLINE  PERFORMANCE WITH A CONVERTIONAL GDP MODEL  

Airline Percentage 

of Flights 

Cancelled 

Passenger 

Delay 

Number of 

Flights 

Delta (DAL) 
 

27.78 11.14 108 

AirTran (TRS) 32.14 12.37 28 

American 

Southest Airlines 

(ASQ) 
 

27.59 18.29 58 

American (AAL) 

 

33.33 46.50 3 

Pinnacle (FLG) 25.00 29.25 4 

TABLE III: AIRLINE  PERFORMANCE WITH CTA-BASED ARCHITECTURE  

Airline Percentage 

of Flights 

Cancelled 

Passenger 

Delay 

Number of 

Flights 

Delta (DAL) 
 

24.07 25.40 108 

AirTran (TRS) 28.57 18.02 28 

American 

Southest Airlines 

(ASQ) 
 

17.24 19.24 58 

American (AAL) 

 

33.33 25.00 3 

Pinnacle (FLG) 0 37.75 4 



The performance data suggests that airlines will approach 

the two GDP procedures in remarkably different fashion. In 

the current framework carriers are more likely to cancel flights 

to create additional capacity and flexibility as well as reduce 

delay. In our modification carriers have more opportunity for 

intra-airline substitution both through speed control and the 

lack of an exemption radius and are also accounting for the 

benefits achieved in the event of an early cancelation. This is 

not something that is assumed in the deterministic planning 

case.  Thus carriers will choose to keep a greater portion of 

their slots. Since there are far fewer cancellations the carriers 

are less affected by actions of other carriers during 

compression. This allows carriers to have more direct control 

over their performance.  

While the example above reveals some information 

regarding the relative effect of our CDM modification, it does 

not provide us with a sense of how strong the possibility of 

early clearance needs to be to affect the decision. We ran the 

model with another set of scenarios in which the early 

clearance intervals were only 7.5 minutes apiece. The 

resulting performance of both models is shown in Figures 7a-

b. In nearly all cases the prospect of an early clearance 

reduced the number of cancellations while increasing the 

passenger delay carriers with more long haul flights. The 

magnitude of the reduction is not quite as prominent, however, 

as that of the 15 min scenarios.  

 

Figure 7a: Percentage Flight cancellation level of Airlines with 
Conventional and Early Clearance. 

Figure 7b: Passenger Delay of Airlines for Conventional and Early 

Clearance Models in minutes. 

While the previous graphs demonstrate significantly 

different behavior on the part of airlines, it is unclear what 

portion of the change is attributable to the possibility of early 

cancellation vs. the lack of an exemption radius. To isolate the 

effect we tested our models both with and without a radius. In 

the former case RBS was used to generate capacity while the 

later used the DB-RBS algorithm. The performance is shown 

in Figure 8. The results suggest that when a radius is present 

large carriers such as Delta will reduce the number of 

cancellations they impose on their flights; this is also the case 

with Air Tran. This likely attributable to the significantly 

larger number of exempt eligible flights they have relative to 

other carriers. Regional carriers such as American Southeast 

Airlines are negatively affected by the presence of the radius 

and are forced to cancel more flights to create substitution 

opportunities. 
  

Figure 8a: Effect of the Exemption Radius on Percentage of Flight     

Cancellations. 

Figure 8b: Effect of the Exemption Radius on Passenger Delay 

 

D. Delay Recovery with GDP cancellation 

In addition to the effect our GDP modifications have on 

the propensity of airlines to cancel flights, we also wanted to 

study the potential benefit we could achieve in delay recovery 

in the event of an early GDP cancellation. To test our model 

we used 5 scenarios in which we assumed early clearance 

times of 0, 15, 30, 45 minutes and 1 hour. The performance in 

each case is shown in Figure 9 below. Delta and AirTran both 



experience noticeable reduction in the overall delay as the 

extent of the early cancellation reaches one hour. This is not 

entirely surprising in the case of Delta because they have a 

greater number of cross-continental and international flights 

than regional carriers such as American Southeast Airlines and 

operate more flights than American and are in a better position 

to recover the delay in the event of cancelation.  

 
Figure 9: Minutes of Passenger Delay Recovered in each Scenario 

V. CONCLUSIONS AND PERSPECTIVES 

In this paper we proposed a new strategy for managing 

ground delay programs. The strategy incorporated both 

Controlled Departure and Arrival Times as well as en route 

speed control. It also eliminated the use of an exemption 

radius which provides incentives for carriers to create their 

own hedging strategies. To model performance under our new 

framework we adapted a stochastic model to account for 

airline hedging. Our analysis suggests that under our new set 

of GDP controls airlines are significantly less likely to cancel 

flights because they hope to recover delay in the event of early 

cancellation. Below we discuss implementation and also 

suggest implications on NextGen. 

A. Near-Term Implementation 

The two biggest challenges to near-term implementation are i) 

insuring CTA compliance (as was mentioned at the outset) and 

ii) modifying the various GDP procedures to support the 

proposed architecture. Two types of enforcement can be 

envisioned. First, violations could be monitored and flight 

operators with poor records penalized in various ways. 

Second, as time-based metering methods are implemented 

CTA information could be communicated to these systems so 

that they could be “CTA-aware” and aid in insuring 

compliance. Regarding ii), the research in this paper as well as 

the work on various speed control measures could be adapted 

to provide revision and dynamic CTA adjustment methods 

applicable to this context. It is probably safe to say there are 

no major road blocks, just the requirement for further 

development and experimentation with the existing concepts. 

The research in this paper also should provide a starting point 

for airline decision support models. A variety of approaches 

(some simpler, some more complex) are possible. There will 

be new information exchange requirements including the need 

for information on the limits to which CTAs can be changed 

for airborne flights. Of course integration with time-base 

metering tools would also induce new information 

requirements. 

It should be admitted that in the near term the full benefits 

envisioned could not be achieved as they require complete 

flexibility on the part of each flight to independently adjust its 

speed. This limitation suggests certain NextGen goals as 

discussed below.  

B. Far-Term Implementation and Implications for NextGen 

NextGen and Sesar both express a TBO vision in which 

flight timing will be closely monitored and controlled. Implicit 

in this vision is the ability to insure some degree of CTA 

compliance. In fact, one can view the architecture we have 

described as a (partial) vision of how GDPs would be 

migrated to a TBO-based NAS. NextGen and Sesar 

technologies also should provide the ability for flights to more 

independently adjust their speeds. This in turn should allow 

for the benefits described in this paper to be more completely 

realized. It is perhaps instructive to consider the underlying 

operational concept of our architecture. Note that, while there 

is a high degree of control over en route flight timing, there is 

also an assumption of a high degree of flexibility. This is not 

compatible with a TBO vision in which a 4D trajectory is set 

at the time of flight departure and then rigorously adhered to 

for the remainder of the flight. Our vision calls for a high 

degree of control and system-wide coordination among 4D 

trajectories coupled with the ability to dynamically adjust 

those trajectories to achieve flight operator and ANSP 

objectives. We feel it is important to incorporate this vision 

into future TBO architectures. 
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