Strategic Planning of Efficient Oceanic Flights

Banavar Sridhar and Neil Chen
NASA Ames Research Center
Moffett Field, CA, USA

Hok Ng
University of California,
Santa Cruz, CA, USA

Olga Rodionova and Daniel Delahaye
Ecole Nationale de l’Aviation Civile (ENAC)
Toulouse, France

Florian Linke
DLR Air Transportation System
Hamburg, Germany

11th USA/Europe Air Traffic Management Research and Development Seminar
June 23-26, 2015
Lisbon, Portugal
Oceanic Flights: How are they different from domestic flights?

- Long highly profitable routes
- Lack of radar coverage and strict entry/exit points
- Separation standards (New York Oceanic Airspace)
 - Separation Minima 50 NM longitudinal for RNP-10 aircraft
 - More stringent Performance Based Navigation (PBN), Communication by data link (CPDLC) and monitoring of position information by ADS-C is reducing separation standards
 - Separation Minima reduced to 30 NM lateral and 30 NM longitudinal for authorized RNP-4 aircraft (December 2013)
- Lack of integration between different traffic flow management systems
- Inefficiencies and controller workload
 - Inability to climb to optimum altitude
 - Limited use of wind-optimal routes or user preferred routing
 - Banks of aircraft arriving at the same time
- US (Nextgen) and Europe (SESAR) making improvements to overcome deficiencies
Previous Research

- **Optimal aircraft trajectories**
 - Aircraft models of various complexity, with or without wind
 - Minimum fuel, minimum time, minimize direct operating cost
 - Avoid bad weather, traffic congestion

- **Most of the system-wide benefits analysis done under no wind conditions**

- **Research on benefits of reduced oceanic separation standards**
 - Better cruise altitudes due to less blockage during climb leading to higher fuel efficiency

- **Flight tests involving city-pairs in US, Europe and Asia**
 - Atlantic Interoperability Initiative to Reduce Emissions (AIRE)
 - Asia and Pacific Initiative to Reduce Emissions (ASPIRE)
What is this paper about?

- Provide system-wide benefits analysis of strategic planning of transatlantic aircraft operations
 - Compare current routes with wind optimal routes
 - Identify city pairs with highest benefit potential and challenges
 - Reduce the potential number of loss of separation at the planning stage
- Groundwork for NASA research in advancing oceanic and global aircraft operations
Outline

• North Atlantic airspace operations
• Simulation methodology
• Strategic planning results
 – Single city pair example
 – Most frequent city pairs
 – City pairs with highest savings potential
 – De-Confliction Strategies
• Concluding remarks
North Atlantic Airspace Operations

- 460,000 flights/year
 - Cruise between 29,000-41,000 feet
 - Airspace congested due to large separation and narrow range of fuel-efficient flight levels

- North Atlantic Tracks (NAT)
 - Westbound (magenta)
 - Eastbound (cyan)

- Tracks published daily for each major flow
Simulation of Baseline and Wind-Optimal Aircraft Trajectories

- **Flight schedules**
 - FAA’s Traffic Flow Management System (TFMS) and Eurocontrol’s Network Manager

- **Global Forecasting System (GFS) wind data**
 - Weather updates 4 times a day
 - Current weather and forecast every third hour for 180 hours
 - 0.5 x 0.5 degree latitude and longitude
 - 64 unequally spaced pressure levels between 0.25 -1000mb

- **Optimization of the complete route**
Options for Baseline Trajectories

• Filed flight plan with a single designator “NATY” representing the changing North Atlantic Track

• Recorded track data from FAA’s Traffic Flow Management System (TFMS)

• Recorded track data from Eurocontrol’s Network Manager (Former Central Flow Management Unit)

• Combined TFMS and Network Manager track data complementing the accuracy of TFMS over US and Network Manager over Europe
Wind-optimal cruise trajectories are computed using the aircraft type, altitude and speed used in the baseline track.
Daily Variation of Potential Fuel Savings
Newark - Frankfurt, July 2012

- Benefits vary significantly from day to day depending on winds
- Mean fuel savings: 2.4% (Eastbound), 2.2% (Westbound)
- Smaller standard deviation for Westbound flights (1% versus 1.8% for Eastbound flights)
Busiest Airports and Commonly Used Aircraft

- **30,354 flights examined during July 2012**

<table>
<thead>
<tr>
<th>Rank</th>
<th>Airport Pairs</th>
<th>Number of Eastbound flights</th>
<th>Number of Westbound flights</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>New York/London</td>
<td>587</td>
<td>591</td>
</tr>
<tr>
<td>2</td>
<td>New York/Paris</td>
<td>324</td>
<td>306</td>
</tr>
<tr>
<td>3</td>
<td>Newark/London</td>
<td>308</td>
<td>306</td>
</tr>
<tr>
<td>4</td>
<td>Chicago/London</td>
<td>303</td>
<td>308</td>
</tr>
<tr>
<td>5</td>
<td>Los Angeles/London</td>
<td>248</td>
<td>248</td>
</tr>
<tr>
<td>6</td>
<td>Boston/London</td>
<td>240</td>
<td>243</td>
</tr>
<tr>
<td>7</td>
<td>Washington, DC/London</td>
<td>186</td>
<td>235</td>
</tr>
<tr>
<td>8</td>
<td>Chicago/Frankfurt</td>
<td>175</td>
<td>190</td>
</tr>
<tr>
<td>9</td>
<td>San Francisco/London</td>
<td>183</td>
<td>167</td>
</tr>
<tr>
<td>10</td>
<td>New York/Madrid</td>
<td>165</td>
<td>180</td>
</tr>
</tbody>
</table>

Aircraft Type

<table>
<thead>
<tr>
<th>Rank</th>
<th>Aircraft Types</th>
<th>Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Boeing 767-300</td>
<td>5034</td>
</tr>
<tr>
<td>2</td>
<td>Boeing 777-200</td>
<td>3945</td>
</tr>
<tr>
<td>3</td>
<td>Boeing 747-400</td>
<td>3513</td>
</tr>
<tr>
<td>4</td>
<td>Airbus A330-300</td>
<td>3044</td>
</tr>
<tr>
<td>5</td>
<td>Boeing 757-200</td>
<td>2986</td>
</tr>
<tr>
<td>6</td>
<td>Airbus A330-200</td>
<td>2280</td>
</tr>
<tr>
<td>7</td>
<td>Airbus A340-300</td>
<td>1298</td>
</tr>
<tr>
<td>8</td>
<td>Boeing 767-400</td>
<td>1256</td>
</tr>
<tr>
<td>9</td>
<td>Airbus A340-600</td>
<td>1117</td>
</tr>
<tr>
<td>10</td>
<td>Boeing 777-300ER</td>
<td>789</td>
</tr>
</tbody>
</table>
Mean Fuel Savings For Top 10 City Pairs during July 2012

<table>
<thead>
<tr>
<th></th>
<th>Top 10 airport pairs</th>
<th>Mean savings, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>New York/London</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>New York/ Paris</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Newark/ London</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Chicago/London</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>Los Angeles/London</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Boston /London</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Washington, DC/London</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Chicago/Frankfurt</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>San Francisco/London</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>New York/Madrid</td>
<td></td>
</tr>
</tbody>
</table>
Fuel Savings Between 100 City Pairs (July 2012)

Descending order of fuel savings between city pairs (max=1, min=100)

- Atlanta/Paris
- Lisbon/Newark

Mean savings, %

Eastbound
Westbound
Highest Potential Fuel Savings

<table>
<thead>
<tr>
<th>Airport Pairs</th>
<th>Savings Rank</th>
<th>Savings (%)</th>
<th>Aircraft/(Usage Rank)</th>
<th>Baseline Fuel (kg)</th>
<th>Savings (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlanta/Paris</td>
<td>1</td>
<td>10.6</td>
<td>B767-300 (1)</td>
<td>34,500</td>
<td>3,660</td>
</tr>
<tr>
<td>Charlotte/Frankfurt</td>
<td>2</td>
<td>7.4</td>
<td>A330-300 (4)</td>
<td>41,700</td>
<td>3,090</td>
</tr>
<tr>
<td>San Francisco/Frankfurt</td>
<td>3</td>
<td>7.3</td>
<td>B777-200 (2)</td>
<td>56,400</td>
<td>4,120</td>
</tr>
<tr>
<td>Seattle/Amsterdam</td>
<td>4</td>
<td>6.1</td>
<td>B767-300 (1)</td>
<td>34,800</td>
<td>2,120</td>
</tr>
<tr>
<td>Chicago/Paris</td>
<td>5</td>
<td>6.0</td>
<td>B767-300 (1)</td>
<td>32,200</td>
<td>1,930</td>
</tr>
<tr>
<td>Lisbon/Newark</td>
<td>1</td>
<td>5.8</td>
<td>B757-200 (5)</td>
<td>18,500</td>
<td>1,070</td>
</tr>
<tr>
<td>Tel Aviv/Philadelphia</td>
<td>2</td>
<td>4.2</td>
<td>A330-200 (6)</td>
<td>53,100</td>
<td>2,230</td>
</tr>
<tr>
<td>Madrid/Miami</td>
<td>3</td>
<td>4.0</td>
<td>B767-300 (1)</td>
<td>32,200</td>
<td>1,288</td>
</tr>
<tr>
<td>Madrid/New York</td>
<td>4</td>
<td>3.5</td>
<td>A340-300 (7)</td>
<td>37,800</td>
<td>1,320</td>
</tr>
<tr>
<td>Paris/Miami</td>
<td>5</td>
<td>3.4</td>
<td>B767-300 (1)</td>
<td>34,800</td>
<td>1,180</td>
</tr>
</tbody>
</table>

- Price of jet fuel: $0.64/kg (IATA, May 15, 2015)
 - Price varied from $0.98/kg to $0.50/kg during March 2014-March 2015
Separation Minima

- Organized Track System (OTS)
 - Vertical separation: 1000 feet (flight level assignment)
 - Lateral separation: 60 NM (ensured by track design)
 - Longitudinal separation: 10 minutes (track entry time and speed)

- Future modernized ATC system
 - Move away from OTS
 - Vertical separation: 1000 feet
 - Horizontal separation: 30 NM
 - Time separation: 3 minutes

Number of conflicts: $\Phi_{ik} = 2$
De-confliction Strategy

- Four-dimensional grid for conflict detection
 - Two aircraft located in the same cell indicates a potential conflict
 - Sampling time step (ΔT) = 1 min (Assuming $V_{\text{max}} = 600\text{kts}$, $\Delta T < 3\text{ min}$)

- Results based on reducing conflicts by adjusting departure times within limits (0-30 min) to time shift trajectory while maintaining wind-optimal routing properties

- Optimization algorithm for conflict resolution
 - Simulated annealing with local gradient search
De-confliction Results for July 15, 2012

![Graph showing number of flights and conflicts before and after de-confliction](image-url)
• Significant reduction in potential conflicts by ground delay of aircraft
 – Number of potential conflicts distributed over different regions and time
• Other approaches: Combination of delay on the ground and rerouting
NASA-DLR-ENAC Collaboration

- NASA: Aircraft route optimization with different cost functions and airspace constraints and feedback from airlines

- DLR: Expertise in Eurocontrol’s Network Manager and feedback from airlines

- ENAC: Conflict detection and resolution

- Collaboration enabled by the opportunities for interaction provided by the US-Europe ATM Research and Development Seminars
Concluding Remarks

- Quantified potential benefits of wind-optimal routes versus the current track system for transatlantic flights and identified city pairs with highest potential benefits by analyzing over 30,000 transatlantic flights during July 2012
 - Potential savings of 5-10% for some city pairs
 - Eastbound savings generally higher than westbound savings

- Positive airlines feedback and suggestions for further research

- Future Work
 - Impact of airspace charges on strategic planning of trajectories
 - Examine the effect of winds and other uncertainties on the planned separations between aircraft
 - Interaction between oceanic trajectories and terminal area traffic