Modeling and Simulation for Reliable LTE-Based Communications in the National Airspace System

A UAS C2 Use Case

Izabela Gheorghisor
Angela Chen
Leo Globus
Timothy Luc
Phillip Schrader

The MITRE Corporation
McLean, VA, USA

USA/ Europe ATM R&D Seminar
June 17-21, 2019
Outline

- Research motivation and goals
- Modeling and simulation (M&S) framework
- Potential small unmanned aircraft system (sUAS) information flow
- Physical layer performance analysis in a sUAS context
- Radio frequency (RF) network performance analysis for wide-area scenario with terrestrial users and sUAS
- Summary of our findings
- Conclusions and next steps
Research Motivation

- Ever-increasing need for wireless connectivity among existing National Airspace System (NAS) users

- Large numbers of new NAS users, including UAS and urban air mobility (UAM) vehicles who will also need wireless connectivity

- Reliable, scalable, and flexible communications link solutions will be key enablers of future large-scale operations
 - Initial Research Use Case: 4G LTE and 5G communications for sUAS to enable BVLOS operations in the NAS

Notes:
- LTE = Long Term Evolution
- BVLOS = Beyond Visual Line of Sight
Overarching Research Goals

- Develop an M&S capability to enable analyses on the command and control (C2) link performance in the context of ensuring the safety of UAS operations
 - Consider the potential use of 4G LTE and 5G for sUAS connectivity
 - Consider potential sharing of network resources among sUAS and terrestrial users

- Provide independent data-driven inputs to FAA for decision making
 - On related oversight and guidance
 - Regarding industry standards recommendations
M&S Framework

RF Network Performance Analysis

Discrete Event Simulation (DES)

LTE Physical Layer Performance Analysis

4G / 5G = 4th / 5th generation wireless technology;
LTE = Long Term Evolution;

Impact on network performance?

Shared network resources

Data Analysis and Visualization

Source: graphics from Pixabay
Potential sUAS Information Flow

BVLOS (CGS₁ ↔ sUA₁)

EVLOS (CGS₃ ↔ sUA₃)

UAS C2 Data between sUA and GCS

Source: graphics from Pixabay

BVLOS = beyond visual line of sight (VLOS)
EVLOS = extended VLOS
GCS = ground control station
Potential sUAS Information Flow (cont.)

BVLOS (CGS₁ ↔ sUA₁)

EVLOS (CGS₃ ↔ sUA₃)

Data from USS Server to GCS

Source: graphics from Pixabay

BVLOS = beyond visual line of sight (VLOS)
EVLOS = extended VLOS
GCS = ground control station
USS = UAS service supplier
Potential sUAS Information Flow (cont.)

BVLOS (CGS₁ ↔ sUA₁)

EVLOS (CGS₃ ↔ sUA₃)

Data from sUA to USS Server

Source: graphics from Pixabay

BVLOS = beyond visual line of sight (VLOS)
EVLOS = extended VLOS
GCS = ground control station
USS = UAS service supplier
Potential sUAS Information Flow (cont.)

BVLOS (CGS₁ ↔ sUA₁)

EVLOS (CGS₃ ↔ sUA₃)

Data from USS Server to GCS
Data from sUA to USS Server

UAS C2 Data between sUA and GCS

Source: graphics from Pixabay

BVLOS = beyond visual line of sight (VLOS)
EVLOS = extended VLOS
GCS = ground control station
USS = UAS service supplier
Physical Layer Performance Analysis in a sUAS Context

- **Goal:** evaluate LTE link performance impact of:
 - sUAS speed
 - RF operational environment
 - sUAS altitude

- **Simulation setup:**
 - MATLAB LTE Toolbox
 - 5G Library add-on

Block Error Rate (BLER) = Number of erroneous block(s) received / Total number of blocks sent

Notes:
- OFDM = Orthogonal Frequency Division Multiplexing
- TB = Transport Block

© 2019 The MITRE Corporation. All rights reserved.
sUAS Simulation Scenario

Main Assumptions and Parameters

<table>
<thead>
<tr>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAS operational environment</td>
</tr>
<tr>
<td>Frequency band</td>
</tr>
<tr>
<td>Channel Bandwidth</td>
</tr>
<tr>
<td>Propagation channel model for sUAS</td>
</tr>
<tr>
<td>Allocated RF resources for data traffic</td>
</tr>
<tr>
<td>sUA mobility</td>
</tr>
<tr>
<td>sUA altitudes</td>
</tr>
</tbody>
</table>

Notes:
3GPP = 3rd Generation Partnership Project
3GPP develops communications standards for cellular networks
Sample Physical Layer Results

Results for sUA at 100 ft AGL in a Rural Environment

Results in RF LOS conditions in a Rural Environment

Notes:
RF LOS = radio frequency line of sight
RF NLOS = radio frequency non-line of sight
© 2019 The MITRE Corporation. All rights reserved.
Summary of Findings from Physical Layer Analyses

- Better performance (lower BLER) if sUA encounters an RF LOS condition to its serving base station (BS) than an RF NLOS condition.

- For our analyzed speeds and frequency bands (at or below 2.5 GHz), sUA speeds have a fairly modest impact on link performance.

- For all 4 analyzed sUA altitudes, better link performance was observed for a sUA than for a terrestrial user.

- However, physical layer performance degrades as the sUA altitude increases.
Wide Geographical Area Scenario and Operational Environment Data

- **Analysis in a rural area near Richmond, VA**
 - 35 km by 35 km

- **Assumed 37 BSs spaced about 5 km apart**
 - Hexagonal grid as described in 3GPP TR 36.777

- **Incorporated digitized terrain and land-use (clutter) data**

Source: background image from Google Earth
Wide Geographical Area Scenario and Operational Environment Data (cont.)

- **Implemented RF propagation models for terrestrial users and for sUA**
 - as described in 3GPP documents
 - TR 38.901 (for terrestrial users)
 - TR 36.777 (for sUA)
 - Included the impact of shadow fading

- **For sUA, the path loss is expressed as:**

 \[
 PL_{LOS} = \max(23.9 - 1.8 \log_{10}(h_{UA}), 20) \log_{10}(d_{3D}) + 20 \log_{10}(40 \pi f_c / 3)
 \]

 - where:
 - \(h_{UA} \) = sUA height AGL (m); \(10m < h_{UA} < 300 \) m
 - \(d_{3D} \) = slant range between BS antenna and the sUA
 - \(f_c \) = center frequency in Gigahertz (GHz)

 \[
 PL_{NLOS} = \max(PL_{LOS}, -12 + (35 - 5.3 \log_{10}(h_{UA})) \log_{10}(d_{3D}) + 20 \log_{10}(40 \pi f_c / 3))
 \]
Signal Level Results for sUA at 100 ft

- Performance Metric: Reference Signal Received Power (RSRP)
Signal Level Results for sUA at 400 ft

- Performance Metric: RSRP
Signal Level Results for Terrestrial Users

- Performance Metric: RSRP
Signal Quality Results for sUA at 100 ft

- Performance Metric: Reference Signal Received Quality (RSRQ)
Signal Quality Results for sUA at 400 ft

- Performance Metric: RSRQ
Signal Quality Results for Terrestrial Users

- Performance Metric: RSRQ
Summary of Findings from RF Network Performance Studies

- Analysis was performed over a wide geographical area near Richmond, VA

- As the sUA altitude increases, the received signal levels at the sUA decrease in areas with no terrain effects
 - Terrain blockage was not a main factor at the analyzed sUA altitudes
 - However, some terrain effects were observed primarily at the lower sUA altitude (100 ft), at the edge of the coverage area

- Received signal levels for sUA at 100 ft and at 400 ft AGL were better than those experienced by terrestrial users

- Received signal quality at sUA decreased as the sUA altitude increases
 - Primarily because of an increase in intra-system interference at the sUA
 - As the sUA altitude increases, the sUA “can see” and “be seen” by more BSs
Conclusions and Next Steps

- Developed a M&S framework and an initial M&S capability
- Analyzed an initial scenario in a rural environment with sUA and terrestrial users sharing network resources

Initial results showed that good signal levels and good signal quality could be achieved for sUAS at low altitudes
- However, as the sUA altitude increases, a decrease in signal quality is observed
- Further analysis is needed, especially for network configurations with denser distributions of BSs

Next steps include:
- Enhancing the M&S capability
- Scenario development & analyses in urban environments
Thank you!

Questions
Abbreviations

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>Three-Dimensional</td>
</tr>
<tr>
<td>3GPP</td>
<td>3rd Generation Partnership Project</td>
</tr>
<tr>
<td>4G</td>
<td>Fourth-generation</td>
</tr>
<tr>
<td>5G</td>
<td>Fifth-generation</td>
</tr>
<tr>
<td>AGL</td>
<td>Above Ground Level</td>
</tr>
<tr>
<td>BLER</td>
<td>Block Error Rate</td>
</tr>
<tr>
<td>BS</td>
<td>Base Station</td>
</tr>
<tr>
<td>BVLOS</td>
<td>Beyond Visual Line of Sight</td>
</tr>
<tr>
<td>C2</td>
<td>Command and Control</td>
</tr>
<tr>
<td>dB</td>
<td>Decibel</td>
</tr>
<tr>
<td>dBi</td>
<td>Decibel with respect to isotropic</td>
</tr>
<tr>
<td>DES</td>
<td>Discrete Event Simulation</td>
</tr>
<tr>
<td>DL</td>
<td>Downlink</td>
</tr>
<tr>
<td>EVLOS</td>
<td>Extended Visual Line of Sight</td>
</tr>
<tr>
<td>FL</td>
<td>Forward Link</td>
</tr>
<tr>
<td>ft</td>
<td>Feet</td>
</tr>
<tr>
<td>GCS</td>
<td>Ground Control Station</td>
</tr>
<tr>
<td>GHz</td>
<td>Gigahertz</td>
</tr>
<tr>
<td>km/hr</td>
<td>kilometers per hour</td>
</tr>
<tr>
<td>LOS</td>
<td>Line of sight</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LTE</td>
<td>Long Term Evolution</td>
</tr>
<tr>
<td>m</td>
<td>meters</td>
</tr>
<tr>
<td>M&S</td>
<td>Modeling and Simulation</td>
</tr>
<tr>
<td>MHz</td>
<td>Megahertz</td>
</tr>
<tr>
<td>NAS</td>
<td>National Airspace System</td>
</tr>
<tr>
<td>NLOS</td>
<td>Non-Line of Sight</td>
</tr>
<tr>
<td>OFDM</td>
<td>Orthogonal Frequency Division Multiplexing</td>
</tr>
<tr>
<td>QAM</td>
<td>Quadrature Amplitude Modulation</td>
</tr>
<tr>
<td>QPSK</td>
<td>Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RL</td>
<td>Reverse Link</td>
</tr>
<tr>
<td>RLOS</td>
<td>Radio Line of Sight</td>
</tr>
<tr>
<td>RMa-AV</td>
<td>Rural Macrocell Environment with Aerial Vehicles</td>
</tr>
<tr>
<td>RSRP</td>
<td>Reference Signal Received Power</td>
</tr>
<tr>
<td>RSRQ</td>
<td>Reference Signal Received Quality</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to Noise Ratio</td>
</tr>
<tr>
<td>sUA</td>
<td>small Unmanned Aircraft</td>
</tr>
<tr>
<td>sUAS</td>
<td>small Unmanned Aircraft System</td>
</tr>
<tr>
<td>TB</td>
<td>Transport Block</td>
</tr>
<tr>
<td>USS</td>
<td>UAS Service Supplier</td>
</tr>
</tbody>
</table>
Notice

This work was produced for the U.S. Government under Contract DTFAWA-10-C-00080 and is subject to Federal Aviation Administration Acquisition Management System Clause 3.5-13, Rights In Data-General, Alt. III and Alt. IV (Oct. 1996).

The contents of this document reflect the views of the authors and The MITRE Corporation and do not necessarily reflect the views of the Federal Aviation Administration (FAA) or the Department of Transportation (DOT). Neither the FAA nor the DOT makes any warranty or guarantee, expressed or implied, concerning the content or accuracy of these views.

@ 2019 The MITRE Corporation. All Rights Reserved.
MITRE’s mission-driven teams are dedicated to solving problems for a safer world. Through our federally funded R&D centers and public-private partnerships, we work across government to tackle challenges to the safety, stability, and well-being of our nation.

Learn more at www.mitre.org