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Abstract 
As a central component of decision support 

tools, trajectory predictors require accuracy levels 
commensurate with desired DST performance. In this 
paper we decompose trajectory prediction accuracy 
as due to a collection of factors influencing 
trajectories under specific operational conditions.  
We discuss the use of “error signals” to report the 
impact of each factor from which multiple accuracy 
metrics can be derived.  We illustrate how the 
definition of the derived metric will influence the 
magnitude and potentially the relative ranking of the 
effects of various factors.  The paper shows that the 
influence of many factors is approximately linear and 
how the results of a sensitivity study can be used to 
approximate a scenario under a wider set of 
conditions.  The results of such a sensitivity study 
can also be applied to investigate interoperability 
between DSTs using disparate trajectory predictors. 

Introduction 
The current vision of the future of the National 

Airspace System in the US, and the implementation 
of the European Air Traffic Management plan rely, in 
part, on the use of decision support tools (DST) to 
provide improved service to the user community 
under increasing traffic demand [1-3].  Furthermore, 
on both sides of the Atlantic, these strategies 
emphasize the measurement of system performance 
for the purposes of continual improvement.   

The quest for improved decision support tools is 
driven by their promise to provide benefits in 
controller productivity and hence to accommodate 
forecast growths in air transportation while 
maintaining or improving the current level of service.  
Air traffic management research and development 
has provided a substantial collection of decision 
support tools that provide automated conflict 
detection/resolution [4-6], trial planning [7], 
controller advisories for metering and sequencing 

[8,9], traffic load forecasting [10,11], weather impact 
assessment [12-14], etc.  Central to the function of 
many of these decision support tools lies the ability to 
properly forecast future aircraft trajectories.  As a 
result, trajectory prediction and the treatment of 
trajectory prediction uncertainty continue as active 
areas of research and development (e.g., [15-23]).   

Prior investigations of trajectory prediction 
performance have often been focused on the 
evaluation of DST performance [4,5,7,16,24,25].  
This is natural, as the performance of DSTs relying 
on trajectory prediction will be tied to the quality of 
the predicted trajectory.  Other investigations have 
focused on stand-alone trajectory prediction and 
methods for improving these (e.g., [15,17-20,22-24]).  
Investigators reported a wide variety of factors 
responsible for trajectory prediction uncertainty such 
as: wind modeling, undocumented procedures, ATC 
operations, aircraft performance, weight, track data, 
radar-based velocity estimates, departure uncertainty, 
etc.  

In addition to there being a wide collection of 
factors influencing trajectory prediction accuracy, 
different measures of accuracy and TP-related DST-
performance measures were reported.  One 
commonly reported measure was a root-mean-
squared along-track positional uncertainty consistent 
with a model of uncertainty presented in [4].  
However, other measures included: vertical errors 
[26], time history of along-track errors [17], mean 
and standard deviation of arrival time prediction 
errors [16], probability of predicting an altitude 
within a tolerance of the actual during transition at a 
fixed look-ahead time [27], etc.  These measures 
were typically related to the function and the 
conditions of interest to the decision support tool 
being investigated.   

Regarding function of the DST, different 
measures of trajectory prediction performance will be 
relevant to different decision support tools.   For 
example, short-term conflict alert may be concerned 
with positional uncertainty at a five-minute look-
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ahead horizon, medium-term conflict detection may 
be concerned with positional uncertainty over a 10-20 
minute range, and metering tools would focus on the 
accuracy of arrival time forecast at a metering fix.  

When we speak of the conditions of interest to a 
decision support tool, we are referring to the 
operational conditions under which the DST would 
operate.  Examples of these include: phase of flight, 
dynamics of traffic (e.g., are there many turns and 
path-stretches), and weather situation. The conditions 
are likely to impact the choice of performance 
measures applicable to the trajectory predictor as 
well.  For example, vertical prediction precision is 
applicable to tools operating in transition. 

One of the consequences of different 
performance measures being reported in the research 
is the added difficulty in comparing results between 
research projects.  Additionally, the measures of 
performance influence the choices made during DST 
development to improve those measures.  These 
choices affect several aspects of trajectory prediction 
including: the fidelity of the prediction model and the 
quality of the data used to drive that model.  As an 
example of the impact on fidelity of the model, a 
DST providing path-stretch advisories would likely 
require turn modeling, whereas this may be less 
important to a long-term sector load predictor.  
Applications concerned with descent, and using a 
“kinetic” aircraft model, could improve prediction 
through downlink of aircraft parameters [28].  This 
latter case represents improvements in input data 
quality.   

With differences in modeling approaches and 
input data, different decision support tools will likely 
operate on inconsistent trajectories with different 
uncertainty characteristics.  This fact can lead to 
some interoperability issues when various DSTs are 
combined at a system level.  At a recent technical 
interchange meeting on the subject [29], various 
researchers reported this same interoperability 
concern resulting from DSTs operating on discrepant 
trajectories.  This interoperability issue was also 
brought to the forefront during the PHARE 
demonstrations (e.g., [30]).  While further 
interoperability issues can develop if the decision 
support tools do not consider their impact on each 
other, reconciling that impact becomes more 
challenging when the underlying trajectories are 
inconsistent. 

In an effort to understand and document the 
effect of factors and conditions on trajectory 
prediction, one of the points of Action Plan 16 – 

Common Trajectory Prediction Capabilities – was to 
investigate the impact of various factors under 
relevant conditions.  Using this as a starting point, 
this paper presents a sample of data from this 
sensitivity study.  In particular, we focus on the 
following aspects: 

1. Impact of metric selection – different metrics 
may exhibit differing sensitivity to certain 
factors. 

2. Impact of operational conditions – the 
operational conditions will dictate the level of 
sensitivity to a particular factor. 

3. Impact of factor – under any given condition and 
for any metric, a rank of the impact of factors 
will be presented. 

One important aspect that is not considered in 
this paper is the notion that some accuracy 
improvements can require increases in computational 
expense.  Thus, when dealing with interoperability 
concerns, an additional factor to consider would be 
the DST-specific timeliness requirements on 
trajectory prediction.    

Trajectory Prediction Context 
Reference [31] presented a useful model of the 

ATM control structures.  This has been modified and 
duplicated within Figure 1 to depict decision support 
tool functions and the role of the TP within various 
DSTs.   

The role of the trajectory predictor is to model, 
based on available information, the behavior of the 
region labeled the ‘TP modeling domain’. While one 
approach would involve attempting to simulate every 
detail within the TP modeling domain, most 
trajectory predictors apply various levels of 
abstraction.  In Figure 1, we refer to this abstraction 
as the prediction model (M).  In order to obtain a 
predicted trajectory, the prediction model operates on 
the input data. These models require input data that 
we separate into two broad classes: intent and other 
input data. The reason for this segregation is due to 
the possible application of intent inferencing engines 
(e.g., [32]) to improve the intent information   

Decision Support Tools take the output of the 
trajectory predictor and either present a forecast of a 
situation (e.g. a conflict, a sector overload), or iterate 
with the TP to obtain an advisory (e.g., a path-stretch 
maneuver to meet metering objectives).  Errors in 
trajectory prediction will impact the outcome and 
eventual performance of the DST.   
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Figure 1 ATM Control Structure [31] and ground-based DST Model

Since trajectory prediction has been 
decomposed into three parts, the error contribution 
due to each part can also be classified in the same 
manner.  Trajectory prediction errors stem from: 
modeling errors, intent errors or other input data 
errors.  This broad classification can sometimes be 
useful when reconciling differences between TPs 
where certain elements are known to be common. 

When we refer to trajectory prediction errors for 
a specific DST, we are typically comparing the 
predicted trajectory for a specific DST to the actual 
trajectory to be experienced by an aircraft.  
Discrepancies between these two types of trajectories 
typically affect the performance of the DST.   

When multiple DSTs are offering advice and 
information to ATC, discrepancies can occur between 

the predicted trajectories of two DSTs.  These 
discrepancies lead to interoperability issues between 
the DSTs.   

As an example, consider the application of two 
DSTs with different trajectory predictors.  While 
these may operate on the same intent information, 
they may have different models (e.g., 
kinetic/kinematic) and require different sources of 
information.  The individual performance of each 
DST will be determined by differences between the 
actual trajectory and the respective predicted 
trajectories.  However, interoperability issues will 
arise due to discrepancies between the two predicted 
trajectories.  Furthermore, since intent is consistent 
between the models, other input and modeling 
differences likely drive interoperability.   
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Decision Support Tools  In order to derive statistics for these curves, a 
set of such error signals would be generated in one of 
two manners: Our initial investigation of trajectory prediction 

fidelity was limited to flight segments above 10,000 
feet.  In this section, we discuss the applicable types 
of decision support tools.   

1. A set of many signals could be generated by 
allowing the prediction time t0 to vary along the 
flight  One of the primary services provided by Air 

Traffic Control is that of separation assurance. This 
service is supported with conflict detection and 
resolution tools.  These span the range from basic 
conflict alerting function [33], to conflict detection 
functions [4-6], to conflict resolution tools in various 
stages of development (e.g., [12,34]).   These tools 
operate in various ranges of interest from one minute 
out for conflict alert to up to 20 minutes for medium 
term conflict detection.  Predictions are based on a 
range of trajectory predictor types and data.  Shorter-
term tools base their predictions on filtered and 
extrapolated aircraft state vectors, while longer term 
predictors require higher-order models of intent and 
requisite data to support those.  Intent-based tools 
exist with either kinetic or kinematic models of 
trajectory prediction. 

2. A set of many flights would be evaluated under 
the same set of circumstances (e.g. with t0 being 
fixed at an event such as top-of-descent) 

IC error

Actual

ε(t|t0)

Actual at t

εj(t|t0)

t  

Forecast at t|t0 

Figure 2 Comparison of actual to predicted 
trajectory Other types of functions provided by DSTs 

(within the domain of interest) include sequencing, 
metering, weather impact assessment, and traffic load 
forecasting [8-14].  Tools providing metering and 
sequencing have a range of approximately 20 minutes 
and use kinetic trajectory models.  Metering tools 
have been integrated with conflict resolution 
functions using identical trajectory prediction [9].  
Traffic Flow Management (TFM) DSTs (weather 
impact, and traffic load forecasting) deal with longer 
time-horizons from a half-hour to three hours out.  
Predicted trajectories for TFM applications do not use 
kinetic models and recently have focused on 
quantifying the temporal uncertainty [11,21].   

While the first case appears to be the common 
approach for trajectory predictions in cruise, if the 
error signal is dependent on the initial prediction time 
(t0), the second set would provide more useful 
measures.  For example, during climb the altitude 
error is not just a function of look ahead, but depends 
on when the prediction was made.  The resulting 
efficacy of DSTs using these forecasts will be 
affected as well. Figure 3 illustrates the altitude 
profile error during climb.   

Altitude 
Error 

Look-ahead

Actual flight 
path 

 

Trajectory Prediction Metrics 
Measuring trajectory prediction performance 

begins with the comparison of trajectories.  Most 
trajectory error metrics are derived from a vector 
random signal that is the evolution of the differences 
between state vectors.  As discussed in [35], these 
comparisons can be spatial or temporal and may 
require synchronization.  Figure 2 illustrates a 
temporal comparison.  The bottom curve represents 
one measure (e.g., εj=along-track error) as a function 
of look-ahead time (t) based upon a forecast at t0.   
When comparing a noisy source (e.g., radar) to a 
forecast, it is useful to project onto the more stable 
trajectory (i.e., the forecast). Figure 3 Altitude error as a function of look-ahead 
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When deriving means from these sets, the first 
set would yield time averages, whereas the second 
would provide ensemble averages (for N flights) as 
calculated in the following manner. 
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Once the type of data set and the underlying 
measure (along-track, cross-track, time at a point, 
vertical error) has been established, the standard 
metrics can be derived from that set (average, rms, 
standard deviation, peak, etc.).   

Another consideration when developing metrics 
for trajectory prediction has to do with large, 
infrequent errors.  These include substantial errors in 
intent that, while infrequent, are of sufficient 
magnitude to affect statistics considered above. 
Certain reported measures capture these effects; for 
example, [27] looked at the frequency with which 
flights exceeded a vertical error bound.  Depending 
on the frequency, trajectory prediction may still be 
suitable and should not be discounted based upon 
statistics skewed by these infrequent events.  

Infrequent errors can be geographically and 
temporally dispersed, as for many intent errors, or 
can be geographically and temporally correlated. This 
can occur as a result of large wind and temperature 
errors occurring as demonstrated in [36].  Frequency 
of large errors is insufficient to capture the impact, as 
large errors could affect 5% of the flights across the 
year, or affect all flights 5% of the time.  Operational 
suitability of a TP is likely to be affected by the type 
of error being reported.   

Factors Affecting Prediction 
Accuracy 

We conducted a parametric analysis of 
trajectory fidelity by first determining the relevant 
factors that determine trajectory prediction accuracy 
in the portion of flight above 10,000 feet. These were 
initially obtained by first brainstorming all the factors 
affecting: cross-track, vertical and longitudinal 
uncertainty.  A joint team of FAA-MITRE and 
NASA engineers with trajectory prediction 
experience categorized these factors and ranked them 
in terms of perceived importance.  This initial list was 
subsequently reviewed, as part of activities under AP-

16, by a team of experts from Eurocontrol.  The high-
impact factors are detailed below. 

1. Intent error – vectors: Deviations from the 
expected route of flight and the turn back to the 
route have a significant effect on cross-track and 
along track error. 

2. Intent error – TOD: Knowledge of the top-of-
descent location is limited due to errors in 
predicting when a clearance will be provided, 
automation input latency and latency in pilot 
execution.   

3. Intent error – Interim altitudes: Automation may 
not have knowledge of interim altitudes and does 
not have access to the duration of the level off.   

4. Intent error – Speed: Uncertainty in the speed 
intent will affect aircraft climb/descent rates and 
the along-track location. 

5. Intent error – Altitude crossing restrictions: 
Knowledge of altitude crossing restrictions can 
help prediction, but prediction of when the 
descent is initiated remains uncertain. 

6. Aircraft performance: Models of aircraft 
performance are subject to modeling errors due 
to simplification, erroneous data or due to 
variations between airframes. 

7. Wind: For a given true airspeed, errors in the 
along-track wind will affect the ground speed 
and hence the predicted position.  During a climb 
and descent, errors in the wind will affect the 
altitude profile of a flight. 

8. Aircraft weight:  Knowledge of the weight of an 
aircraft allows TPs to better predict climb and 
descent profiles. 

9. Wind gradient modeling: Certain predictors do 
not include the effects of wind gradient on climb 
or descent.  Neglect of this term can have a 
significant effect on the altitude profile. 

10. Turn modeling – Certain predictors do not 
include the effect of modeling turns.  This will 
affect both the cross-track and along track error. 

Many more factors were initially considered (e.g., 
flight technical error). However, the above listed 
factors were determined to be the ones with the 
largest influence.  For this reason, we only 
investigated the above factors.  

Impact In Descent 
As an example of the trajectory fidelity 

investigation, we discuss the impact of various 
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factors in descent.  The impact of a specific factor is 
evaluated by first generating a baseline trajectory for 
an aircraft under specific conditions.  These 
conditions include: atmospheric conditions, aircraft 
type, aircraft weight, number of turns, cruise flight 
level, bottom of descent location, etc.  The specific 
factor is then parametrically perturbed to compute a 
perturbed trajectory.  The baseline and perturbed 
trajectory are then compared to yield an error signal 
in altitude and along-track as shown in Figure 4 for a 
10% change in speed.  This shows a co-temporal 
example; a co-spatial case would have distance on the 
abscissa.   
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Figure 4 Example calculation of error signals 

As part of the fidelity investigation, we compute 
error signals for multiple conditions and for the 
factors previously discussed.  From the error signal, 
we can derive some commonly reported metrics and 
report these errors for each parameter being varied 
according to the magnitude of that variation.  Here 
we present four cases for each factor as shown in 
Table 1.  For example, we computed the impact of 

errors from –10% to 10% in the weight of a flight and 
wind bias errors from –20 to 20 knots.   

Table 1 Parameter values for each factor 

Factor Errors 

TOD – NMI 2 5 10 25 

Co-temporal level-off – MIN 1 2 3 4 

Co-spatial level-off – NMI 5 10 15 20 

Acft perf - % drag error -5 -2.5 2.5 5 

Weight - % -10 -5 5 10 

Wind Grad – kts/1000’ -3 -1.5 1.5 3 

Turn Model – NMI of PS 5 10 15 20 

Vector intent – NMI of PS 5 10 15 20 

Wind Bias – KTS -20 -10 10 20 

Speed Intent - % -10 -5 5 10 

Color in Charts     

 

The figures that follow show the difference in 
the impact of each factor on various metrics.  Each 
color on the bar chart represents the magnitude of the 
factor errors reported in Table 1.  Figures 5 and 6 
show the co-temporal peak altitude error for a large 
jet under two descent conditions: heavy/slow 
compared to light and fast.  Two level-off factors 
were considered, one below the M/CAS transition (1) 
and another above (2). 

Co-temporal Peak Altitude Errors

-10000 -5000 0 5000 10000

TOD

Speed

Gradient

Acft Perf

Weight

Level-Off (1)

Level-Off (2)

Altitude (ft)

 

 Legend: 
  See Table 1 

Figure 5 Co-temporal peak altitude errors in 
descent for a slow and heavy large jet 
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Co-temporal Peak Altitude Errors

-15000 0 15000

TOD

Speed

Gradient

Weight

Acft Perf

Level-Off (1)

Level-Off (2)

Altitude (ft)  

Figure 6 Co-temporal peak altitude errors in 
descent for a fast and light large jet 

We note that the conditions here (base weight 
and descent speed) have a substantial impact on the 
magnitude of virtually all errors (except wind 
gradient and aircraft performance).  For example, the 
impact of a 25 NMI top-of-descent (TOD) error 
changes from a peak altitude error of 8625 feet to 
14566 feet due to the baseline conditions.  We note 
that the relative magnitude of these factors remains 
similar, with slightly more emphasis on weight error 
for the lighter case.  

 
Co-spatial Peak Altitude Errors
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Gradient
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Turn model

Level-Off (1)

Intent - Vector
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Figure 7 Co-spatial peak altitude errors in descent 

for a fast and light large jet 

 
In the case of the co-temporal metrics measured 

from top-of-descent, certain errors are zero (lateral 
errors, wind-biases and the neglect of turns).   
However, these appear when we consider the same 

metric using a co-spatial synchronization as shown in 
Figure 7 for the light and fast condition.  Note that 
the ordering and relative magnitude of the sensitivity 
to each factor is similar regardless of the use of co-
temporal or co-spatial synchronization. 

  Legend: 
  See Table 1 

Regarding the intent errors (e.g., top-of-descent, 
level-off, vectors), while these appear significantly 
larger than other factors, these are reported in the 
preceding figures as the error contribution, when the 
intent error occurs.  Since intent errors only occur 
some fraction of the time, the eventual average 
contribution of these errors will be reduced.   

One commonly reported metric is the along-
track error as a function of look-ahead time.  Figure 8 
illustrates the impact of factors on a 10-minute look-
ahead from top-of-descent.  Looking at the ranking of 
the factors, the impact of wind is significantly greater 
than for altitude errors.  Also, proper modeling of 
turns increases in impact for this metric.   

 
Look-ahead Error (10 min)
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 Legend: 
  See Table 1 

Figure 8 Along-track error at 10-minute look-
ahead for a fast and light large jet 

We also investigated the impact on metering fix 
arrival time prediction as shown in Figure 9.  As 
expected, the results are similar to the along-track 
error case.  However, in this scenario the bottom-of-
descent was fixed to ensure the metering fix was 
being reached.  In the prior scenarios, the top-of-
descent was used as a reference point (except for the 
cases with an error in the top-of-descent).   

 Legend: 
  See Table 1 

 
For most of the accuracy metrics investigated, 

the error contribution due to a factor scales 
approximately linearly with the error in the input 
factor.  Thus, a 10% error in weight yields about 
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twice the resulting error as a 5% error in weight.  
However, along-track and time errors due to omission 
in the climb gradient did not scale linearly. 

 
MF Arrival Time Errors
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Figure 9 Metering fix arrival time error for a fast 
and light large jet 

Application to a Scenario 
Once we have parametric data (as error signals 

shown previously) for a variety of aircraft types 
operating under a variety of conditions, we can obtain 
errors for specific metrics derived from these signals.   
Using the linearity of the metrics with the error in the 
factor, we can approximate the contributions due to 
specific cases.  For example, knowing that we have a 
9% error in weight, we can estimate the contribution 
due to that factor.   

In Figure 10, we simulated a case of 700 flights 
sampled across the NAS using a single day’s weather.  
Each flight was subject to errors in each factor 
sampled from a distribution.  The errors were 
computed from an ensemble-averaged signal.  We 
assumed that altitude level-offs would be imposed on 
27% of flights and vectors on 23% of arrivals per 
observations of operational data.  We obtained 
distribution on duration and magnitude of vectors 
from the same operational data in transition.  Various 
aircraft types were modeled and the nominal speeds 
were sampled from descent speed distributions for the 
specific aircraft models.  We also show in Figure 10 
the approximation that can be obtained by scaling the 
uncertainties obtained in Figure 8.  More accuracy 
can be obtained by combining information from a 
variety of aircraft types in proportion to the data in 
the sample.  This is particularly evident for the error 

due to aircraft performance, as this is likely to be 
sensitive to the aircraft type. Also, the magnitude of 
the vectors observed in our sample data was smaller 
than the values used in our parametric study.  Our 
wind bias approximation could have been improved 
through scaling based upon the proper distribution of 
headings for all flights, rather than assuming a 
uniform distribution.   

 Legend: 
  See Table 1 

Along-track errors (10 min)
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Figure 10 Along-track errors at 10 minutes from 
TOD for a sample of descents 

We have shown here an example illustrating the 
evaluation of the expected accuracy of trajectory 
prediction due to certain factors.  The same 
methodology can be applied to investigate the 
interoperability question of disparate predictors.  In 
this case, the error signals are comprised of the 
difference between one predictor and a separate 
predictor.   

These differences can arise when predictors 
have modeling differences (e.g., the gradient term or 
the turn modeling is not included), the predictors may 
or may not have access to adequate intent information 
(e.g., down linked speed intent or top-of-descent 
information), or some information is simply not used 
by one of the predictors.  For example a predictor 
may not use aircraft weight information, but 
substitute some value as a proxy in a lookup 
performance table.  In this case, the weight 
uncertainty effect would have to be estimated based 
upon the uncertainty associated with using the proxy 
for aircraft weight. 
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