Spacing instructions in approach: Benefits and limits from an air traffic controller perspective

Isabelle Grimaud, Eric Hoffman, Laurence Rognin, Karim Zeghal

EUROCONTROL Experimental Centre
CASCADE programme of EUROCONTROL EATM
NUPII and EVP programmes of EC DGTREN
Background

- **Motivation**
 - Improve the sequencing of arrival flows through a new allocation of spacing tasks between air and ground
 - *Neither* “transfer problems” *nor* “give more freedom” to pilots … shall be beneficial to all parties

- **Principles**
 - Use of new “spacing” instructions
 - Flight crew tasked by the controller to maintain a given spacing to a designated aircraft
 - *No* modification of responsibility for separation provision

- **Assumptions**
 - Air-air surveillance capabilities (ADS-B)
 - Cockpit automation (ASAS)

References: PO-ASAS FAA/EUROCONTROL, ASAS circular ICAO, ANC 11 recommendations
Related studies

- **Theoretical perspective**
 - Sorensen, Goka (1983)

- **Pilot perspective**
 - Williams (1983)

- **ATC perspective**
 - Hammer (2000)
Contribution

- **Extension along two axis**
 - Addressing integration of flows – not only spacing within a single flow
 - Considering both upstream (en-route) and downstream (approach) sectors

- **Done so far**
 - Definition of spacing instructions for arrival sequencing
 - Two streams of air and ground experiments to assess their feasibility, benefits and limits

![Diagram](image-url)
From past to present

- **Upstream sectors (2000… 2002)**
 - Positive impact on controller activity (increased availability, anticipation) and on control effectiveness (more regular spacing)

- **Downstream sectors (2002…)**
 - Hardly compatible with current day practices, e.g. late vectors for integration onto final approach?

2002
- Identify adaptations required (organisation of roles, working method and airspace)

2003
- Assess, under very high traffic, usability and usefulness of spacing instructions in terminal areas
Spacing procedure

<table>
<thead>
<tr>
<th>Target identification</th>
<th>Controller</th>
<th>Pilot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designates target</td>
<td>“EEC005, select target 3054”</td>
<td>Identifies target</td>
</tr>
<tr>
<td>Confirms target</td>
<td>“EEC005, target 3054 identified, 8 o’clock, 30 miles”</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spacing instruction</th>
<th>Controller</th>
<th>Pilot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gives heading, merging point and required spacing</td>
<td>“EEC005, continue heading then merge WPT 90s behind target”</td>
<td>Initiates direct when spacing achieved</td>
</tr>
<tr>
<td></td>
<td>“EEC005, merging WPT”</td>
<td>Adjusts speed to maintain spacing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>End of spacing</th>
<th>Controller</th>
<th>Pilot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancels spacing</td>
<td>“EEC005, cancel spacing, speed 180 knots”</td>
<td>Cancels spacing and takes speed</td>
</tr>
</tbody>
</table>
Experiment setup

- Participants
 - Six approach controllers (London Gatwick and Heathrow, Paris Orly, Roma) during 4 weeks

- Airspace
 - Two generic approach sectors derived from Paris TMA
 - Standard trajectories with sequencing legs and merge point

- Organisation
 - Pickup and feeder grouped with executive and planning

- Traffic
 - All equipped and already sequenced (under spacing)
 - 34 aircraft per hour with sequence of up to 7

- Variables
 - “No” versus “Time”
 - Use of spacing at controller discretion
Airspace (base)
Airspace (merge points)
Airspace (sequencing legs)
Instruction repartition

Number of instructions

No

Time

APO+APR

Spacing
Heading
Speed
Geographical mapping of instructions

No

Time

No spacing

Session A1N

Time spacing

Session A1T
Geographical distribution of instructions

Distance to reference point (BOKET) in Nm

-10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80

No APO

Time APO

Number of instructions

Cancel Spacing Heading Speed Level
Geographical distribution of fixations

![Graph showing the geographical distribution of fixations. The x-axis represents the distance to the reference point (FAO26) in Nm, and the y-axis represents the percentage of fixations. The graph compares two conditions, 'No' and 'Time', with blue and green lines respectively. The peak fixations are observed around 10-15 Nm for the 'No' condition and 20-25 Nm for the 'Time' condition.](image-url)
Spacing on final

APO+APR

Number of aircraft

Time spacing (s)

- No
- Time
Aircraft trajectories

No spacing

Session A1N

Time spacing

Session A1T

No

Time
Conclusion

- **Benefits**
 - Usable and useful under very high traffic
 - Positive feedback from controllers
 - Positive impact on activity (more availability, anticipation) and on control effectiveness (more regular spacing)

- **Limits**
 - Change in working methods
 - Detrimental if not properly used (e.g. increased workload)

- **Issues**
 - Detection of unexpected events and handling of abnormal situations?
 - Applicability to other airspace?
 - Mixed equipage

- **Next**
 - Interaction between upstream and downstream sectors with arrival manager (Fall '04)