Modeling Flight Delays and Cancellations at the National, Regional and Airport Levels in the United States

Banavar Sridhar (NASA Ames)
Yao Wang (NASA Ames)
Alexander Klein (Air Traffic Analysis, Inc.)
Richard Jehlen (FAA)

8th USA/Europe Air Traffic Management Seminar
Napa, CA
June 29 - July 2, 2009
Motivation

• Weather is the major cause of delay in the National Airspace System (NAS)

• Four situations

• Develop baseline relating delay, cancellations and other NAS performance metrics to the weather conditions to improve Traffic Flow Management
Results

• Developed flight delay and cancellation models at the national, regional and airport levels

• Expected number of aircraft impacted by weather good proxy for delay

• Different models for summer and winter

• All metrics can be estimated to same level of accuracy

• FAA delay databases are complementary

• Neural Network models perform slightly better
Outline

• Background
• Objectives
• Modeling/Estimation of Metrics
 – Regression Models
 – Neural Network Models
• Results
• Conclusions and Future Work
Background

- Databases
- Airspace Performance Metrics
- Weather Impacted Traffic Index
Databases

• FAA Operations Network (OPSNET)
 – Data available from 1990
 – Daily values
 – 45 airports
 – Total national delay

• Aviation System Performance Metrics (ASPM)
 – Data available from 2000
 – Every 15 minutes
 – 75 airports
 – Total schedule-based and flight-plan based arrival delays, departure delays, airborne delays, flight cancellations

• Paper uses data from 2005-2008
NAS Performance Metrics

Default Customer View

APF Dashboard
For Wednesday, August 13, 2008

Welcome Joe User
Today is Thursday, August 14, 2008

Days 1 2 3 4

With Last 8 Days

ATM Minutes Last 8 Days

ON Time & On Time Gas Arrivals Last 8 Days

OpsNET Delays Last 8 Days

Hold Minutes Last 8 Days

Delay, MIT, Predictability Last 8 Days

Efficiency Last 8 Days

<table>
<thead>
<tr>
<th>Customer View</th>
<th>ATO View</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAS</td>
<td>Service Area</td>
</tr>
</tbody>
</table>

Print | Help | Log Out | Customize
NAS Performance Metrics

Default Customer View

APF Dashboard
For Wednesday, August 13, 2008

Welcome Joe User
Today is Thursday, August 14, 2008

Print | Help | Log Out | Customize
Grid-based Weather Impacted Traffic Index (WITI)

Aircraft positions

Severe weather

\[WITI(k) = \sum_{1 \leq j \leq m} \sum_{1 \leq i \leq n} T_{i,j}(k)W_{i,j}(k) \]
National Weather Index (NWX)

• Models weather and congestion at airports and terminal area

• Three components
 – En-route WITI (E-WITI), representing convective weather impact on major flows between city pairs
 – Terminal WITI (T-WITI), representing weather impact on major airports
 – Airport Queuing Delay (Q-Delay), representing surface and terminal-airspace weather impact on major airports in a non-linear fashion
Objectives

- Develop and compare NAS performance metric models based on FAA operational traffic databases
 - Different metrics
 - Impact of databases
 - Approach
 - Linear regression models
 - Neural networks models
Modeling/Estimation of Metrics

- WITI at the national level \((X)\)
- WITI at the Center level \((X_p)\)
- Performance metric \((\delta)\)
- Models
 - Linear Regression (LR) \[\delta = \alpha X + \beta \]
 - Multiple Linear Regression (MLR) \[\delta = \sum_{p=1}^{20} \alpha_p X_p + \beta_p \]
 - Neural Networks \[\delta = f(X_p) \]
Performance of Regression Models

OPSNET Total Delay
(100K minutes)

Number of Flight Cancellations

Observed Delay

Observed Flight Cancellations

Estimate

Estimate
Performance of Regression Models

<table>
<thead>
<tr>
<th>Type of Metric</th>
<th>Correlation Coefficient</th>
<th>Root Mean Squared Error</th>
<th>Mean Absolute Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPSNET delay (LR)</td>
<td>0.71</td>
<td>32,700 minutes</td>
<td>26,600 minutes</td>
</tr>
<tr>
<td>OPSNET delay (MLR)</td>
<td>0.77</td>
<td>31,200 minutes</td>
<td>24,500 minutes</td>
</tr>
<tr>
<td>Scheduled delay</td>
<td>0.75</td>
<td>99,200 minutes</td>
<td>74,300 minutes</td>
</tr>
<tr>
<td>Flight Cancellations</td>
<td>0.77</td>
<td>131 flights</td>
<td>94 flights</td>
</tr>
</tbody>
</table>

- Regression models perform a good job of accounting for the impact of weather on delays and flight cancellations.
- For systems with demand-capacity imbalance, growth in delay is non-linear.
Nonlinear Models

Single Linear Model (SLM)

Three-Piece Linear Model (3PLM)

Weather → WITI Computations

Traffic → Center WITIs

Exact Classification

Predicted Classification

Inputs X_p

Hidden Layer

Output Layer

Performance Metric δ (Target)
Performance of National Model

OPSNET Total Delay

<table>
<thead>
<tr>
<th>Type of Model</th>
<th>Correlation Coefficient</th>
<th>Root Mean Squared Error</th>
<th>Mean Absolute Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>.71</td>
<td>32,700 minutes</td>
<td>26,600 minutes</td>
</tr>
<tr>
<td>MLR</td>
<td>.77</td>
<td>31,200 minutes</td>
<td>24,500 minutes</td>
</tr>
<tr>
<td>Neural Network</td>
<td>.88</td>
<td>30,000 minutes</td>
<td>23,300 minutes</td>
</tr>
</tbody>
</table>

Flight Cancellation

<table>
<thead>
<tr>
<th>Type of Model</th>
<th>Correlation Coefficient</th>
<th>Root Mean Squared Error</th>
<th>Mean Absolute Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>.73</td>
<td>146 flights</td>
<td>106 flights</td>
</tr>
<tr>
<td>MLR</td>
<td>.77</td>
<td>131 flights</td>
<td>94 flights</td>
</tr>
<tr>
<td>Neural Network</td>
<td>.88</td>
<td>131 flights</td>
<td>93 flights</td>
</tr>
</tbody>
</table>

- Neural Network models perform slightly better
• Models using NWX perform slightly better and the difference varies with the estimation method
• Neural networks and MLR trained using 2005-2007 data and tested using 2008 data
• Higher correlation during summer
• Lower correlation in winter may be due to higher number of cancellations on days with heavy snow, very low ceilings/visibility
Airport Delay Models using Regression Analysis

- Modeled 34 major airports in the U.S.
- Good delay estimates for ORD, ATL,..
- Delay at major airports in Eastern U.S not influenced by NWX in the neighboring Centers

<table>
<thead>
<tr>
<th>Airport</th>
<th>γ_{LR}</th>
<th>γ_{MLR}</th>
<th>$\gamma_{MLR}/\gamma_{LR} - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORD</td>
<td>0.743</td>
<td>0.803</td>
<td>0.08</td>
</tr>
<tr>
<td>ATL</td>
<td>0.752</td>
<td>0.777</td>
<td>0.03</td>
</tr>
<tr>
<td>EWR</td>
<td>0.640</td>
<td>0.725</td>
<td>0.13</td>
</tr>
<tr>
<td>PHL</td>
<td>0.764</td>
<td>0.805</td>
<td>0.06</td>
</tr>
<tr>
<td>DFW</td>
<td>0.577</td>
<td>0.646</td>
<td>0.12</td>
</tr>
<tr>
<td>JFK</td>
<td>0.618</td>
<td>0.670</td>
<td>0.08</td>
</tr>
<tr>
<td>LGA</td>
<td>0.685</td>
<td>0.723</td>
<td>0.06</td>
</tr>
<tr>
<td>LAX</td>
<td>0.195</td>
<td>0.496</td>
<td>1.54</td>
</tr>
<tr>
<td>IAH</td>
<td>0.684</td>
<td>0.725</td>
<td>0.06</td>
</tr>
<tr>
<td>DEN</td>
<td>0.550</td>
<td>0.664</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Concluding Remarks

- WITI-based models provide a good basis for estimating delay due to convective weather
- Estimation/Modeling of performance metrics resulting from the use of the two databases are complementary
- Models have higher correlation during summer than during winter
- For all metrics, neural networks produce higher correlation and reduced errors than regression methods
Future Work

• WITI as a measure of delay to evaluate different TFM policies
 – Airspace Flow Program procedures
 – What-if scenarios
 – Optimization
• Inclusion of additional factors from the operational databases