Hybrid Demand and Capacity Model for the Future Air Traffic Management Concept of Operations

Juan José Rebollo

8th USA/Europe ATM R&D Seminar
June 29 – July 2

© GMV, 2009
OUTLINE

- Background
- Future Demand and Capacity Balance Concept
- Future Needs for Demand Adjustment
- Introduction to the Hybrid DCB Model
- User Preferences in the Hybrid DCB Model
- Key Performance Indicators
- Simulation Results
- Model Applications
- Next Steps
Background: GMV presentation

- Multinational conglomerate founded in 1984, private capital
- Headquarters in Spain, subsidiaries in Portugal and USA, and branch offices in Poland, Republic of Korea, and Malaysia
- Over 1,000 employees all over the world with an annual turnover of more than $120M
Background: Project context

- GMV initiative (company investment) to carry out a research project in the ATM domain in line with the trends in the European ATM R&D

- Special thanks to AENA for its involvement in the project (with its own internal resources) to provide key guidelines and feedback

- Coordination of the project with other ATM research activities carried out by GMV, in particular with the ATLANTIDA project

http://www.cenit-atlantida.org/portal/index_en.html
Future Demand and Capacity Balance Concept

- Consistent with the Short Term Network Planning EP3 DoD (SESAR ConOps)
 - Network management
 - Airspace & airport-in-the-network
 - Regional & Sub-regional actors
 - Traffic flow measures (TTAs) allocated through a queue management process
 - Rolling planning window
 - Performance-based operations (SLA)
 - Trajectory-based Operations
 - User Preferred Trajectories
 - TTAs absorbed by the users according to their priorities
 - Users negotiation process under severe capacity drop (UDPP)
Future Needs for Demand adjustment

- The Demand adjustment optimization model must therefore
 - Integrate airports and airspace capacity (time dependant)
 - Generate constraints at any point (ground and airborne delays)
 - Obtain a solution that explicitly minimizes a given cost function
 - Be a trajectory-based system, capable of assigning the optimal TTAs to individual user trajectories (on ground and airborne)
 - Take into account user preferences (flight priorities)
 - Find a solution in a short computational time
Introduction to the Hybrid DCB Model (1/2)

- The presented model solves the air traffic network optimization problem (with multiple airports, sectors’ and airports’ capacity)
- Lagrangian air traffic flow measures (ATFM) are calculated for individual flights
- The core of the algorithm is a Pseudo-Eulerian-Lagrangian flow model
- Near-optimal individual ATFM measures are calculated in a short computational time. En-route and ground delays may be calculated
- Queue synchronized outputs in each constraint area (airspace/elementary volumes and airports) are obtained by the algorithm
- User preferences can be taken into account
Introduction to the Hybrid DCB Model (2/2)

- The air traffic measures will be given to airspace users as a set of space-time constraints on the overloaded airspace/airport area (TTAs)
- The model manages a large amount of information; consequently, Key Performance Indicators are easy to calculate from it
Hybrid DCB Model Information Flow

- The model manages Aggregated and Non- Aggregated data
- Conversion algorithms are required
- The optimality of the solution depends on the validity of a set of assumptions
From Actual Traffic to Flows (1/2)

- The conversion to flow requires some approximations
- The aim is to model actual traffic data as a reduced number of flow-based trajectories (sharing route, altitude, velocity, and origin/destination airport)
- Due to the nature of the air traffic management problem, the aggregation is possible
- Is the conversion to flow worth it?

Routes from Madrid to four Spanish airports.
From Actual Traffic to Flows (2/2)

Cruise velocity distribution for flights travelling from Madrid to Barcelona (3-month period).

Cruise altitude distribution of flights travelling from Madrid to Barcelona (3-month period).
Pseudo-Eulerian-Lagrangian Model (1/2)

- It is the core of the Hybrid DCB Model
- The output of the algorithm is a set of air and ground flow-based delays
- The previously calculated flow-based trajectories are aggregated into flow-planes, which share the same collection of variables
- Control volumes occupying the same airspace can be modeled differently
- Flow-planes considerably reduce diffusion and dispersion problems of the Eulerian models
- Our purpose is to reach a trade off between the computational effort and the accuracy of the model
Pseudo-Eulerian-Lagrangian Model (2/2)

- The model can be written as a time-varying difference equation
- The problem is solved with the Model Predictive Controller technique
- Minimizing the weighted sum of all air and ground delays
- The constraints of the problem are the capacity constraints (sectors’ and airports’ capacity), system dynamics, and operational constraints
- The resulting MILP is relaxed to an LP problem

\[
x_{(i,j,1)}(k + 1) = x_{1(i,j,1)}(k + 1) + \cdots + x_{p(i,j,1)}(k + 1) \\
= a_{1(i,j,1)} \sum_{m \in S_{1(i,j)}} \beta_{1(i,j,m)} x_{1(i,j,m)}(k) \\
+ u_{1(i,j,1)}(k) + y_{1(i-1,j,1)}(k) + (q_{1(i,j,1)}^{\text{depart}}(k) \\
- u_{1(i,j,1)}^{\text{ground}}(k)) + q_{1(i,j,1)}^{\text{exo}}(k) + \cdots \\
+ a_{p(i,j,1)} \sum_{m \in S_{p(i,j)}} \beta_{p(i,j,m)} x_{p(i,j,m)}(k) \\
+ u_{p(i,j,1)}(k) + y_{p(i-1,j,1)}(k) + (q_{p(i,j,1)}^{\text{depart}}(k) \\
- u_{p(i,j,1)}^{\text{ground}}(k)) + q_{p(i,j,1)}^{\text{exo}}(k)
\]

\[
x(k + 1) = A(k)x(k) + B_1(k)u(k) + B_2(k)q(k) \\
y(k) = C(k)x(k) + D(k)u(k)
\]
Automatic Parameter Identification Tool

- The configuration of the presented model is not an easy task; it cannot be done manually.
- First, each SEL is mapped to a certain sector. Sectors modeling accuracy depends on the SELs size.
- Next, traffic parameters are calculated. Waypoints are approximated to the nearest SEL center. And, flow-based trajectories are obtained.
- The model parameters are calculated for each flow-plane.

Sectors as SELs aggregation.
From Flow to Actual Traffic (1/2)

- Individual ground and en-route delays need to be calculated from the obtained flow controls
- Capacity constraints must be met
- The algorithm uses each constraint area input flow as a reference to follow
- Each constraint area input is modeled as a queue. Each queue throughput will be given by the solution computed by the Pseudo-Eulerian-Lagrangian flow model
- Each flow-based trajectory will have an associated queue
From Flow to Actual Traffic (2/2)

- Ensuring that each Lagrangian queue throughput is lower or equal to the calculated flow value, the capacity constraints will be met.
- Queues are active when flow delays are calculated. Diffusion parameters need to match high traffic density scenarios.
- The Hybrid DCB model will give the airspace users a set of time space constraints.

\[
\text{if } QOT > ETA \text{ then } TTA = QOT
\]

- The target time of arrival (TTA) will be absorbed by the users according to their priorities.
- The obtained individual flights solution is near-optimal, but it is obtained in a short computational time.
User Preferences in the Hybrid DCB Model

- User preferences can be taken into account at two different levels:
 - **Inter-flow preferences**: the delays calculated for each flow stream in the model may have different weights associated with them in the cost function
 - **In-flow preferences**: any queue priority discipline can be implemented in the flow to individual flights conversion algorithm, without affecting the queue’s throughput
Key Performance Indicators

- In the new performance-based framework, the definition of a set of metrics is essential.
- It is straightforward to extract data from the proposed model for the calculation of a set of KPIs, which give a good picture of the model performance:
 - Number of aircraft entering a sector per time step
 - Maximum number of aircraft present simultaneously in a sector
 - Total en-route delay for each flight
 - Sector load in each sector over time as a percentage of the maximum load
 - Total network en-route delay
 - Number of aircraft landing in each airport each time step
 - Number of aircraft departing in each airport each time step
 - Delay of each flight at the arrival airport
 - Total arrival delay in the network
 - Delay of each flight at the departure airport
 - Total departure delay in the network
 - Difference between the target time of arrival of each flight to each sector and the initially planned time
Simulation Results (1/3)

- The scenario shows the performance over a one-day planning period.
- The simulation scenario is composed of 20 flow-based trajectories, 28 sectors and 7 airports.
- The scenario leads to 144 occupied SELs.
- The MPC look ahead time affects the optimality of the solution and the computational requirements (we chose 40 min.).
Simulation Results (2/3)

Instantaneous load of sector LECMCJ with no ATFM measures.

Instantaneous load of sector LECMCJ under dynamic maximum sector load.
Simulation Results (3/3)

- Some post-processing may be needed to eliminate transient effects
- FC/FS was the queue discipline considered in the simulation
- Each MPC iteration was solved in less than 1 minute
- Real time implementation is possible for this scenario (4-minute time step)
Model Applications

- Validate new operational concepts (run validation exercises)
 - Short term changes to current ConOps (e.g. DMEAN)
 - Mid/Long term changes (SESAR/NextGen)

- Monitor network performances in the execution phase
 - Performances forecast (monitor compliance with SLA)
 - Assess network effects (what-if / sensitivity analysis)
 - Demand uncertainty
 - Rerouting scenarios
 - Service Level Agreement (objective function to optimize)
Next Steps

- The presented analytical model was developed in Matlab-Simulink environment that imposes severe software limitations on the size of the exercise to run: partial re-engineering (e.g., use of sparse matrices) or re-coding of the model may be necessary.

- From a model point of view, the key research areas are:
 - More work should be done on the aggregation of the *flow-based trajectories*, *since the aggregation of the flow-based trajectories* reduces the number of variables in the problem, but the lack of stability on the diffusion parameters matching actual traffic data can introduce undesired errors.
 - Study how the users’ inter-flow and in-flow priorities affect the solution performance by studying the defined KPIs under different sets of priorities.
 - Study the stability of the users’ TTAs absorption process.
Thank you

www.gmv.com