Managing Passenger Handling at Airport Terminals

individual-based model for stochastic passenger behavior

Michael Schultz and Hartmut Fricke

9th ATM Seminar, Berlin, 15.06.2011
Structure

- motivation

- stochastic movement model
 - development and adaptation of model
 - validation using the fundamental diagram (speed-density correlation)
 - navigation inside virtual environments

- airport terminal
 - passenger and handling processes
 - data collection at Dresden and Stuttgart airport

- implementation
 - development of an application environment
 - proof of concept

- summary and outlook
Motivation

- modeling of individual movements to ensure
 - reliable optimization of traffic and handling infrastructures
 - sustainable configuration of guidance systems

- high variety of scenarios of model application, supported by high performance of current computer architectures

- demand for adequate approaches to model individual passenger behavior
 - delay caused by terminal processes significantly influences performance
 - e.g. security check (5-12%), baggage (2%), dep. gates and boarding (5-8%)

- application area: airport terminals
 - optimization often based on staff experience
 - scientific models of passenger behavior barely used
Dynamic Movement Behavior

- dynamic effects caused by
 - individual characteristics
 - decentralized decisions and control

→ self driven agents with capability to
 independent problem solving

- self organization
 - spontaneous pattern
 - non-standard physics
 - no external rules given, only local
 interactions defined
 - higher order of system leads to
 efficient use of infrastructure
Self-Organization - Formation of Bi-Directional Lanes
Microscopic Model

- **social force model**
 - bi-directional attraction and repulsion forces, depending on distance, direction, relative speed and group constellation
 - additional contact forces within highly congested areas
 - continuously in time and space

- **cellular automat**
 - discrete, grid-based model (cell size equals to minimum space requirement)
 - transition probability to adjacent cells
 - *simple exclusion* - only free cells could be used by agents

- convergence of approaches: discretization to speed up model implementation vs. use of conceptual analogies

- reliable passenger model demands for stochastic model (fast performing) approach
Development of Stochastic Model - Cellular Automat

- stochastic model defined by specific transition matrix $M = p \cdot q$
 - 3 transition states for both horizontal and vertical \{-1, 0, +1\}

$$
\begin{align*}
 h^{+1} &= \frac{1}{2} (\sigma^2 + \mu^2 + \mu) \\
 h^0 &= 1 - (\sigma^2 + \mu^2) \\
 h^{-1} &= \frac{1}{2} (\sigma^2 + \mu^2 - \mu)
\end{align*}
$$

- simplistic approach for p and q
 - no backward movements
 $$
p^{+1} \text{(vorwärts)} = \mu, \quad p^0 \text{(stop)} = 1 - \mu
\$$
 - symmetric variance
 $$
 q^{\pm1} \text{(rechts,links)} = \frac{1}{2} \sigma^2, \quad q^0 \text{(stop)} = 1 - \sigma^2
 $$
Development of Stochastic Model (2)

- horizontal and vertical probability is only 1,5-dimensional (variance ≠ movement)

- turning the transition matrix (re-indexing) to cope with diagonal movements

- superposition of horizontal and diagonal matrix for 2D movements

\[M = \begin{cases}
(1 - \lambda) \bar{M} + \lambda \bar{M}, & \lambda = \tan \alpha, \quad 0 \leq \alpha < \frac{\pi}{4} \\
\frac{1}{\sqrt{2}} (1 - \lambda) \bar{M} + \sqrt{2} \lambda \bar{M}, & \lambda = \tan \left(\frac{\pi}{2} - \alpha\right), \quad \frac{\pi}{4} \leq \alpha \leq \frac{\pi}{2}
\end{cases} \]
Model Adaptation

- sample configuration

\[\begin{align*}
\alpha &= 15^\circ \\
\mu &= 0,8 \\
\sigma^2 &= 0,2 \\
\end{align*}\]

\[\begin{align*}
\alpha' &= 15,39^\circ \\
\mu' &= 0,78 \\
\sigma'^2 &= 0,072 \\
\end{align*}\]

- investigation of the model points out
 - expected value of transition matrix deviate form movement vector
 - additional dependence of movement angle regarding to
 - variance and
 - speed

- demand for efficient compensation: correction functions
Interactions Between Agents

- stochastic model defines the movement of one agent

- consideration of collisions
 - random shuffled update
 - crossings not allowed

- additional set of parameter
 - movement strategy
 - stochastic choice of occupied cell: wait vs. move
 - amount of movements per simulation round
 - investigated band width: 1-5 steps
 - movement trace
 - all temporally used cells are occupied during current simulation round
Validation - Fundamental Diagram (I)
Validation - Fundamental Diagram (II)

- stochastic transition model fulfill standard criterion for valid movement approach
Navigation - Continuous Movement Direction

- navigation in complex environment demands for efficient algorithms

- automatically created navigation points as a basis for a network structure
Navigation - Grid-Based Movement Direction (I)

- primary approach for navigation to one specific goal
 - *flood fill*, mark the target area (cell) and step wise fill all adjacent cells of the grid
 - corresponding distance metric consists of artifacts

- resulting metric: $|\Delta x - \Delta y| + \sqrt{2} \min(\Delta x + \Delta y)$
 - cells located on the axes of symmetry are correctly calculated
 - other cells possesses a higher distance regarding to the Euclidian reference
Navigation - Grid-Based Movement Direction (II)

- deduction of direction field
 - characteristics depends on the sequence of calculated cells
 - complementary fields occur by counterrotating creation

- combination of complementary direction fields leads to correct direction field regarding to the Euclidean distance
Passengers at Airport Terminals

- airport terminal as main infrastructure for handling passengers
 - aggregation of different traffic modes (modal split, hub-and-spoke)
 - complex spatial process arrangements and guidance
 - highest security requirements in traffic sector

- fundamental movement decisions of passengers based on:
 - remaining time to departure
 - individual experiences and expectations
 - travel motivation
 - available information

38 minutes 38 minutes 73 minutes
arrival check-in security boarding

Diagram:
- walking in public area > 5 min
- directly to security control

Graph:
- Occurrence (%)
- Time to departure (min)
- 100%
- 75%
- 50%
- 25%
- 0%

- 120 -100 -80 -60 -40 -20
Data Collection - Video-Based Passenger Tracking (DRS)

- recording and analysis of movement trajectories
 - segmentation of picture
 - adaptation of lighting
 - analysis of masking
 - determination of position
 - identification of passengers

- **people tracker**
 - prototype application
 - trajectory extraction
 - manual correction
 - export of passenger related trajectories
Data Collection - Video-Based Passenger Tracking, Results

- results
 - women vs. men
 - tourist vs. business
 - size of the group
Data Collection - Process Times (STR)

- focused on check-in counter
 - arrival distributions
 - amount of group members and pieces of baggage
 - personnel (level of experience)
 - bulky baggage
 - handling disturbances

- functional adaptation of measurements
 - stochastic distributions

\[F(\alpha, \beta, \Delta x) = 1 - e^{-\left(\frac{x-\Delta x}{\beta}\right)^\alpha} \]

- \(\chi^2 \) test as quality index
Implementation - Application Environment

- development of software-prototype
 - goal: proof of concept of passenger movement and handling model
 - visualization
 - model- and scenario analyses
 - derive functional/infrastructural requirements

- visual computing tools platform (VCTP)
 - Java-based, eclipse IDE
 - separation of model and visualization
 - comprehensive interface definitions

- virtual terminal environment
 - geometry of terminal infrastructure
 - flight plan, passenger characteristics
Implementation - Applications

- investigations of boarding procedures
 - *outside-in, back-to-front, block, random*
 - analyses of variance- and significance
 - aircraft used: A320, B777, and A380

- validation tests at Stuttgart airport
 - determination of specific process behavior
 - variation of amount of check-in counter and security lanes

- passenger related process evaluation
 - relation of waiting to remaining time using Dresden airport as reference
 - analysis of check-in and security control
Summary and Outlook

- **summary**
 - development of a reliable stochastic movement model
 - optimized *flood fill* algorithm
 - data collections at airport terminals provide a solid base for calibration of passenger and handling process characteristics
 - validation of the model approach against specific airport scenarios
 - *visual computing tools platform* as versatile application environment for multi-agent simulations, *people tracker* as validation tool

- **outlook**
 - consideration of human perception (signage, information flow, guidance)
 - navigation of passengers considering partial information
 - model of information reception and decision making (*cue driven* approach)
 - group dynamic effects
 - evacuation simulation
Don’t panic!

Thank you.

contact
Michael Schultz
fon: +49 351 46339446
mail: schultz@ifl.tu-dresden.de